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ABSTRACT 

Current practice in fatigue life prediction is based on assumed initial structural flaws 

regardless of whether these assumed flaws actually occur in service. Furthermore, the model 

parameters are often estimated empirically based on previous coupon test results. Small 

deviations of the initial conditions and model parameters may generate large errors in the 

expected dynamical behavior of fatigue damage growth. Consequently, a large degree of 

conservatism is incorporated into structural designs due to these expected uncertainties. 

The current research in the area of Structural Health Monitoring (SHM) and probabilistic 

fatigue modeling can help in improved fatigue damage modeling and remaining useful life 

estimation (RULE) techniques. This thesis discusses an integrated approach of SHM and 

adaptive prognosis model that not only estimates the current health, but can also forecast 

the future health and calculate RULE of an aerospace structural component with high 

level of confidence. The approach does not assume any fixed initial condition and model 

parameters. This dissertation include the following novel contributions. 1) A Bayesian 

based off-line Gaussian Process (GP) model is developed, which is the core of the present 

condition based prognosis approach. 2) Different passive and active SHM approaches are 

used for on-line damage state estimation. Applications of passive sensing are shown to 

estimate the time-series fatigue damage states both under constant and random fatigue 

loading. It is found that there is a good correlation between estimated damage states 

and optically measured damage states. In addition, applications for both narrow and 

broadband active sensing approaches are presented to estimate smaller incipient damage. 

It is demonstrated that the active sensing techniques not only can identify smaller incipient 

damage but also can quantify fatigue damage during all the three stages (stages I , II, 

in 
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and III) of fatigue life. 3) An integrated on-line SHM and off-line GP predictive model 

is developed for real-time condition based damage state estimation of complex Aluminum 

structures under fatigue loading. It is found that the proposed technique can forecast the 

future damage states well before the final failure. 
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CHAPTER 1 

Introduction 

1.1. Overview and Motivation for Structural Health Monitoring and Prognosis 

Structural Health Monitoring and Prognosis (SHMP) is the process of continuously 

monitoring a system for degradation or damage and to forecast its future state. This 

method is different from non-destructive inspection (NDI) in that SHMP is done in-situ 

on the structure and is conducted on a near-continuous basis. A SHMP system consists 

of networks of sensors which are permanently attached to the structure to monitor its 

condition over time. 

1.1.1. Motivation from catastrophic events 

Structures may fail catastrophically if appropriate measures are not taken. For exam

ple, the structural failure on April 28, 1988 of a 19 year old Boeing 737, operated by Aloha 

airlines, was a defining event in creating awareness of aging aircraft the aviation community. 

This aircraft lost a major portion of the upper fuselage in full flight at 24,000 feet, near 

the front of the plane. Investigation by the United States National Transportation Safety 

Board (NTSB) concluded the accident was caused by metal fatigue [1]. It is conceivable 

that, if SHMP systems were installed in the Aloha airlines aircraft, then such accident could 

have been prevented. In another example, on February 1, 2003 the Space Shuttle Columbia 

disintegrated over Texas during re-entry into the Earth's atmosphere, with the loss of all 

seven crew members, shortly before it was scheduled to conclude its 28th mission. The 

cause of the accident was a breach in the thermal protection system (TPS) on the leading 

edge of the left wing. This breach was caused by a piece of insulating foam that separated 

from the left bipod ramp of the external tank as assessed by the Columbia accident inves

tigation board [2]. A SHMP system placed in the vicinity of the leading edge of the wing 
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would have been useful to detect the damage caused by debris impact and provide timely 

warning to the crew members and NASA officials to take necessary action. 

1.1.2. Motivation from mounting ageing aircraft inspection and maintenance cost 

Ageing aircraft is an issue that has been discussed for more than a decade. Statistics [3] 

show that the number of aging aircraft (older than 15 years) has increased significantly, with 

around 4600 in 1997 for US and European built civil aircraft and more than 1900 aircraft 

older than 25 years. This number increased to 4730 (> 15years) and 2130 (> 2byears) 

respectively in 1999. At present the above numbers will be much higher. The same can be 

seen with military aircraft, where an increasing number of aircraft (e.g. F4 fighter aircraft) 

now exceeding the age of 40 years of service. Looking at mid-life updates of current fighter 

airplanes, service lives of 50 years and more can be expected. Considering individual aircraft 

maintenance cost, it represents approximately 11 percent [4] of an airline's total operating 

expenses, becoming a large burden to both military and civilian aircraft industries. The 

use of real-time SHMP system will reduce the overall aircraft maintenance cost significantly 

by lowering the number of schedule based maintenance. 

1.1.3. Motivation based on human error in aviation maintenance and inspection 

Aviation safety depends on minimizing error in the entire system. While the role of 

flight deck human error has received much emphasis, more attention has been recently 

directed toward reducing human error [5] during maintenance and inspection. Aviation 

maintenance and inspection procedures are part of a complex organization, where individ

uals perform varied tasks in an environment with time constraints, sparse feedback, and 
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sometimes under harsh ambient conditions. These situational characteristics, in combi

nation with generic human erring tendencies, result in varied forms of error. Sometimes 

simple human error results in catastrophic accidents and loss of life. For example, failure 

to replace horizontal stabilizer screws on a Continental Express aircraft resulted in in-flight 

leading-edge separation causing 14 fatalities [6] 

1.2. Need for an Automated Structural Health Monitoring and Prognosis System and Cur

rent Trend 

The Continental Express aircraft could have been saved if the health and the remain

ing life of the load bearing airframe structure would have been estimated properly. The 

current trend in research on real-time structural health monitoring and prognosis (SHMP) 

systems are to develop techniques that can detect, localize, quantify and forecast the ad

verse changes in a structure in real-time. Such a system can ultimately help to reduce 

the life-cycle cost and also to avoid catastrophic failure. Thus real-time health monitoring 

and prognostics are emerging as the forefront of Condition Based Maintenance (CBM) of 

critical structural systems. Although condition based prognosis is an integrated system of 

SHM and prognostics, the majority of the available literature focuses on either SHM or on 

prognosis separately. The following subsections presents a literature review on the current 

status of SHM, prognosis and condition based prognosis. 

1.2.1. Current research in online structural health monitoring 

Structural health monitoring (SHM) system is an automated system that can mon

itor the condition of a structure in real-time. Currently, SHM is an active research area 

not fully developed for industrial purposes, with exception of some limited success as in 
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the case of the Health and Usage Monitoring Systems (HUMS) program implemented on 

main rotor and gearbox components of large rotorcrafts [8, 9]. The HUMS system was 

developed based on vibration sensor measurements. An essential feature, which is a key 

to the limited success of HUMS, can be attributed to the fact that the rotor speed (not 

the torque) is maintained typically within two percent of the nominal speed for all flight 

regimes and there is a single load path with no redundancy. These constraints provide a 

basis for a stable vibration spectrum from which a change in the measured parameter is 

attributable to component deterioration. This ideal scenario, consisting of an easily identi

fiable parametric change coupled with a stable excitation source, does not exists for fixed 

wing aircraft subjected to complicated loading spectrum. At present, aircraft operators 

use NDI techniques for damage evaluation. Although SHM is different from NDI, some of 

the fundamental detection and quantification techniques used in SHM have been adopted 

from NDI techniques. A brief literature review on current NDI based damage assessment 

approaches used in the aerospace industry is presented in the following subsections. 

1.2.1.1. Current practice of damage condition assessment in aircraft industry 

Currently, the aircraft industry follows either the manual or automated inspection 

practice to assess the condition of different aircraft components at any given instant of time 

[3]. The conventional manual inspection procedure is based on either visual inspection or 

one of the different methods developed in the mid-50s and initially used in the early to 

mid-60s. The basic foundation for NDI was established by discoveries in classical physics 

made in the 19th century. However, the pioneering work in ultrasonic was done in Russia 

by Sokolov, Firestone in the USA, Trost in Germany and Sproule in the UK, during World 

War II [11, 12]. The two most established NDI methods within the aircraft industry are 
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ultrasonic [13] and eddy current [14] inspection. Ultrasonic is preferred to detect corrosion, 

bond line defects or flaws in composite structures, while eddy current is used for fatigue 

crack detection or detection of material thinning as a result of corrosion. An overview of the 

different variations in these NDI techniques applied to aircraft structures, including their 

estimated minimum detectable damage size, advantages, and disadvantages, has been given 

by Siegel, and et al. [10]. The present practice within the aircraft industry is to use these 

techniques manually. In many situations this practice may tedious and even error prone. 

Alternate approaches are also being investigated in order to automate these inspection 

processes using robots [3]. These robotic systems are still in research stage and one of the 

goals is to make the robots to automatically crawl along the aircraft skin particularly along 

the rivet lines. An extensive description of the state-of-the-art in robot-assisted aircraft 

inspection has been given by Siegel et al. [15]. 

Compared to NDI system, an SHM system uses the techniques of NDI to provide 

continuous (or on-demand) information about the state of a structure, so that an assessment 

of the structural integrity can be made at any time, and corrective actions may be taken 

as necessary. SHM systems can be broadly divided into two groups: passive sensing and 

active sensing SHM. The following subsections present the current trend on both passive 

and active sensing SHM. 

1.2.1.2. Current research in passive sensing SHM 

Passive sensing SHM refers to the use of sensors that measures structural parameters 

(e.g natural frequency, mode shapes, curvature, strain etc.,) without using any external 

source to excite the structure. During the late 1970s and early 1980s engineers and re

searchers, particularly in the aerospace and offshore oil industries, began to explore vibra-
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tion based damage detection techniques [16]. For passive sensing SHM, the time history 

response of a structure can be measured by a variety of sensors (e.g. accelerometers, strain 

gauges, etc.). Based on this time history responses, damage sensitive parameters such as 

natural frequency and mode shapes are estimated. A detail assessment of passive sensing 

based damage estimation approaches can be found from the review papers published by 

Carden, et al. [30] and Montalvo, et al. [17]. SHM methods based on the change natural 

frequency often fall into one of two categories [17]: the forward and the inverse problem. 

The forward problem consists in determining what the natural frequency change due to a 

known damage case (which may include its location, extension and type) will be. Whereas, 

the inverse problem estimates the damage conditions from the changes in the natural fre

quencies. Compared to natural frequency damage estimation, mode shape change damage 

estimation techniques require estimation of mode shapes, which requires either a single 

excitation point and many sensors, or a roving exciter with one or more fixed sensors. 

Many modal analysis techniques are available for the extraction of mode shapes from data 

measured in the time domain [18]. Damage detection methods have been developed for 

the identification of damage based directly on measured mode shapes or mode shape cur

vatures. A commonly used mode shape damage estimation technique is Modal Assurance 

Criterion (MAC). The MAC value can be considered as a measure of the similarity between 

two mode shapes. A MAC value of 1 is a perfect match and a value of 0 means they are 

completely dissimilar. Thus, the reduction of a MAC value may be an indication of damage. 

West [19] uses MAC to determine the level of correlation between modes from the test of 

an undamaged space shuttle orbiter body flap and the modes from the test of the flap after 

it has been exposed to acoustic loading. 
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A drawback of most mode shape based techniques is that they are insensitive to smaller 

damage and the necessity of having measurements from a large number of locations. Chat-

topadhyay and Dragomir-Daeseu [20] proposed strain-based damage indices and modified 

versions of the MAC and the modal strain assurance criterion (MSAC) and the coordi

nated modal strain assurance criterion (COMSAC) for identifying delamination in compos

ite plates. They observed that modal strain is a more appropriate measure of identifying 

the presence of delamination than classical mode shapes. Furthermore, Swann and et al. 

[21] proposed a damage index based on in-plane modal strain to characterize the dynamic 

behavior of laminated composite plates of arbitrary thickness with discrete multiple delam-

inations. Comparisons were also shown with two other damage indices such as MSAC and 

COMSAC. In their work they observed that COMSAC fails to predict the extent of damage 

even for moderately sized delaminations. Experimentally using strain gauges and scanning 

laser vibrometry [22] they had also shown that COMSAC and MSAC fail to predict damage 

for cases with small delaminations, where small strain changes occur between the healthy 

and the damaged plates. The COMSAC and MSAC also failed to predict the damage 

location for composite plates where the modal strain was measured at a small number of 

locations. In contrary, the authors showed that the strain-based damage index provides 

more accurate information on the damage location and extent, in all of the cases they stud

ied. In addition to the strain based damage estimation technique, during last decade, the 

usages of smart materials and distributed sensors have been introduced in structural health 

monitoring (SHM). The vibratory response of any structure can be detected by monitoring 

the voltage output of surface bonded or embedded piezoelectric sensors [23, 24, 25]. Kim 

and et al. [26] Ghoshal and et al. [27] presented a procedure to conduct transient analy-
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sis of piezoelectric smart composite plates in the presence of delamination damage. They 

showed that the presence of delamination damage contributes to increased amplitude and 

frequency shifts in the delaminated plate transient responses. Furthermore, damage estima

tion techniques based on accelerometer measurements were also became popular during the 

last decade. Williams, et al. [28] presented a time-series vibration signal based techniques 

to quantify bearing damage in rotating machinery. The work presented involves running 

new undamaged ball and roller bearings through its entire life until failure. Conventional 

first order statistical metrics, such as root mean square, peak value, kurtosis and crest 

factor, are estimated based on accelerometers and acoustic emission sensor measurements 

acquired throughout the test. Much later Qiu, et al. [29] presented a wavelet filter-based 

weak signature detection method and its application on rolling element bearing prognostics. 

In general, the available literature on vibration based SHM demonstrates that there is 

no universal agreement as to the optimum method for using measured vibration data for 

damage detection, location or quantification. Furthermore, the sensitivity and measurabil-

ity of the global modal parameter shifts due to localized damage is a matter of disagreement 

amongst the research community. However, there are still some promises if sensor measure

ments sensitive to local damage (as in case of strain gauge measurements) and statistical 

pattern recognition techniques [31] are used to extract information from time-series vi

bration measurements rather than just comparing the extracted natural frequency, mode 

shapes and/or the direct time-series sensor data. Farrar and Doebling [16] suggested that 

the vibration based damage detection problem is fundamentally one of statistical pattern 

recognition problem. In their opinion, to advance the state-of-the-art in vibration based 

damage detection, developments of non-model based pattern recognition techniques are 
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required. 

1.2.1.3. Current research in active sensing SHM 

Unlike passive sensing methods, active schemes are capable of exciting the structure in 

a prescribed manner. Among different active sensing SHM approaches, ultrasonic guided 

wave propagation technique is currently an active research area. A detailed review on 

guided wave based active sensing SHM is presented by Raghavan and Cesnik [32], and 

by Giurgiutiu [33]. One of the earliest reported experimental work on Lamb wave based 

guided wave is by Worlton in 1961 [34]. A novel structural health-monitoring concept, with 

piezoelectric wafer active sensors (PWAS) was presented by Giurgiutiu [35]. PWAS can 

be structurally embedded as both individual probes or as phased arrays. Hay et al. [36] 

presented filtered back-projection and reconstruction algorithm for probabilistic inspection 

of damage (RAPID) detection using guided wave active sensing. Their work compared the 

results between both approaches and shows that the RAPID technique is more sensitive to 

material loss and less susceptible to confuse noise and image anomalies with real structural 

damage and/or material loss. Yang et al. [37] worked to autonomously detect the degrada

tion in mechanical integrity of the standoff carbon-carbon (C-C) thermal protection system 

panels. The goal was to identify the location of loosened bolts as well as to predict the 

torque levels of those bolts. Monnier [38] presented a guided wave based SHM approach to 

detect damage in a carbon/epoxy skin of an Airbus™ aircraft flap. Fourier analysis was 

used and retained two discriminating parameters: the maximum amplitude and phase of 

the transmitted spectrum to estimate impact damage. Somasekhar et al. [39] presented 

a similar work on low-velocity impact damage in composite plates. Conventional C-scan 

was conducted to confirm the presence of damage, its location, and size. Ultrasonic Lamb 
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waves were generated and received by piezoelectric crystals, and tomographic images were 

reconstructed with the collected data using iterative tomographic algorithms. Zhao et al. 

[40] presented a guided wave based approach for detection, localization and damage growth 

monitoring in an aircraft Wing. A preliminary survey on the wing panel with angle beam 

guided wave transducers revealed the difficulties of wave propagation over long distance 

in the panel due to strong attenuation from paint and rivet scattering. Nevertheless, a 

circular sparse array of eight-element PZT discs was implemented on the inner surface of 

the wing to monitor any cracks or corrosion on the wing. Olson et al. [41] presented a beam 

forming technique using transmitting and receiving arrays applied to Lamb waves. They 

discussed both experimental testing and analytical modeling of Lamb wave propagation. 

Michaels and Michaels [42] presented a guided wave signal processing and image fusion 

technique for in situ damage localization in plates. In their work, a method of utilizing 

information from multiple frequencies has been proposed and implemented for improv

ing the quality of images constructed from sparse transducer arrays attached to plate-like 

structures. Even though their proposed technique has implementation issues for practical 

applications, the results presented are significant because they demonstrate that systematic 

incorporation of multi-frequency information can significantly improve the detection and 

localization of damage. Yu et al. [43] presented an in situ method for detecting damage 

in thin-wall structures using 2-D embedded phased-arrays of PWAS. In their work, the 

2-D PWAS arrays have shown the capabilities for full range damage detection in regular 

plate-like structures. They used genetic algorithm, which worked well for far field damage 

and on well-designed laboratory experiments. Kim and Sohn [44] presented a reference 

free damage detection technique that can be used to detect damage without referencing to 
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previously stored baseline data. The technique utilizes the polarization characteristics of 

piezoelectric wafers attached on both sides of thin metal structure. Numerical and experi

mental results were presented on uniform thickness plate to demonstrate the feasibility of 

the proposed technique to instantaneous crack detection. Qing et al. [45] investigated the 

survivability and functionality of a piezoelectric sensor based active SHM system under the 

operating conditions of typical liquid rocket engines, such as cryogenic temperature and 

vibration loads. The performance of different piezoelectric sensors and a low temperature 

adhesive under cryogenic temperature were investigated. The active SHM system for liquid 

rocket engines was exposed to flight vibration and shock environments on a simulated large 

booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate 

the physical robustness of the built-in sensor network as well as operational survivability 

and functionality. Test results demonstrated that the proposed system can withstand oper

ational levels of vibration and shock energy under the cryogenic temperature environment. 

Recently Santanu and et al. [46] proposed an active sensing technique to determine in-plane 

locations of delaminations in composite plates. An active sensor network with optimal sen

sor placement was designed to characterize the existence of damage in composite plate. By 

incorporating the sensor certainty region and the sensing density, the developed optimal 

sensor network was able to provide a description of the perturbations caused by the pres

ence of damage. Kostson and Fromme [47] presented a guided ultrasonic wave technique 

for monitoring fatigue crack growth in fastener holes at the second layer of multi-layered 

plate structures, which a common problem in aerospace industry. The multi-layered struc

ture investigated consists of two aluminum plate strips bonded using a structural paste 

adhesive. This is not a pure SHM approach. Guided ultrasonic waves were excited using 
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multiple piezoelectric discs bonded to the surface of the multi-layered structure, and wave 

propagation in the tensile specimen was measured using a laser interferometer. Measure

ment of the guided wave amplitude change allows, in principle the detection of fatigue 

cracks from laser measurements close to the fastener hole. Chakraborty et al. [48] pre

sented an advanced signal processing and classification method to classify various types 

of fastener failure damage. The time-varying signals collected from piezoelectric sensors 

are decomposed into linear combinations of highly localized Gaussian functions using the 

matching pursuit decomposition algorithm. Classification was then performed by matching 

the extracted damage features in the time-frequency plane. To further improve classifi

cation performance, the information collected from multiple sensors was integrated using 

a Bayesian sensor fusion approach. Results were presented demonstrating the algorithm 

performance for classifying signals obtained from different types of fastener failure damage 

in an aluminum plate. Doyle et al. [49] investigated the application of embedded ultrasonic 

and magneto-elastic active sensors for monitoring the integrity of bolted joints in a satellite 

panel structure. Two damage detection approaches were considered, the acousto-elastic 

method and the magneto-mechanical impedance technique. Their experimental investi

gations demonstrated the need of the acousto-elastic method for detecting and locating 

loosened bolts in a satellite structures. 

1.2.2. Current research in offline fatigue damage prognosis 

Fatigue life prediction is an integral aspect of aerospace structural design. One of the 

two major approaches currently used for the fatigue design of aerospace structures are: 

safe life and damage tolerant approach. The safe life approach dates back to 1924 when 

Palmgren [50] presented his work on linear cumulative damage in the life evaluation of 
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ball bearings. In 1945, Miner [51] proposed a similar concept that is applicable to the 

design of aircraft components. After about a decade, Jacoby [52] and Arden [53] found the 

linear cumulative damage rule of the safe life approach proposed by Palmgren and Miner 

is not suitable as the most reliable approach to predict fatigue life. Jacoby [52] in his 

work predicted that the lives of one-third of about 300 tests conducted on different types 

of structures and materials were considered to be on the non-conservative side. Similarly, 

Arden [53] found that the hypothetical pitch link problem formulated by the American 

Helicopter Society (AHS), showed variations in predicted fatigue life from 9 to 2,594 hours. 

To find a better and more reliable fatigue damage prediction approach, a damage tolerant 

philosophy was introduced in the 1960's by the U.S. Air Force [54]. This was in an at

tempt to prevent catastrophic accidents resulting from a less than perfect manufacturing 

process. A direct comparison between the damage accumulation and the damage tolerant 

approach can be found in the NASA report [55]. Today, damage tolerant based fatigue 

damage modeling approaches are widely practiced and are continuously being improved 

for life estimation of structural components under both constant and variable cycle fatigue 

loading. These models are primarily based on fracture mechanics, as far as fatigue failure 

is concerned. However, prediction of fatigue crack growth in complex structures is highly 

complex, even under constant amplitude loading. This is primarily due to the manner in 

which various parameters, such as loads, material properties and crack geometries, inter

act with each other to affect the crack propagation, which is not clearly understood [56]. 

Therefore, prediction of fatigue crack growth under typical service loads experienced by 

aircraft structures is an even more involved task because transient loading effects in fatigue 

crack growth rates, may affect fatigue life significantly. A vast majority of fatigue crack 
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growth models [57, 58], have been limited to constant-amplitude stress cycles where the 

crack opening stress is assumed to be constant. These models cannot be used directly for 

variable-amplitude service loading because they cannot capture the intrinsic dynamic be

havior. The FASTRAN-II [59, 60, 61] and the AFGROW [62] models capture the dynamics 

under variable amplitude by incorporating the crack opening stress as a physical variable 

in the fatigue crack growth model. Recently, Ray and Partnakar [63, 64], Patankar and 

Qu [65], and Qu et al. [66] proposed different state space models to predict fatigue dam

age under different variable loading. The state space model presented, although based on 

the original physical concept of the FASTRAN model [59, 60, 61], significantly reduces the 

computation time and memory requirements. A detailed comparison of computational time 

requirements under different variable load cases for both the FASTRAN and state space 

models is presented in [65]. However, the above mentioned propagation physics based mod

els are developed on standard coupon geometry, thus when using these models for damage 

prognosis of real-life complex structures, approximations have to be made. Iyyer et al. [67] 

presented the use of a damage tolerant based approach for fatigue damage prediction of 

Navy's P-3C Aircraft. In their approach, to estimate crack growth at different locations of 

the aircraft, they used a simplified standard coupon geometry such as a compact tension 

(CT) specimen [68]. However, as an initial condition in the damage model, the initial crack 

length found during the full-scale fatigue test was used. The above approximation works 

well some time but may not be a general purpose approach. To model fatigue damage in 

real-life complex geometries a finite element (FE) based approach is required. However, 

there is not a single finite element based approach currently available that can estimate 

fatigue damage effectively. The main drawbacks attributed to FE models are usually the 
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fact that fixed finite element mesh is used and currently there is no computationally effi

cient damage propagation mechanism available. On the other hand, the fatigue damage 

prediction approach is a time-evolving approach, which requires dynamic mesh updating 

or an equivalent approach with computationally efficient damage propagation mechanism. 

Recently Giner et al. [69] presented an implementation of the extended finite element 

method for fracture problems within the finite element software ABAQUS™. Although 

the proposed finite element approach currently is in its nascent stage, it is expected to be 

useful in predicting fatigue damage of complex geometries in future. Although the above 

mentioned FE damage growth models [69] can be used to model complex structures, it is 

not be useful in real-time on-board applications. The major drawback in FE based physics 

models is the high computational requirements that make it unsuitable for on-board ap

plications. To avoid the computational problem in the FE approach, a probabilistic data 

driven approach can be used to model fatigue crack growth. There are numerous stochastic 

crack growth models those are currently available. Broadly they can be classified into two 

groups: Damage accumulation [99] stochastic models and damage propagation stochastic 

models [77, 78, 80]. Between these two approaches, the damage propagation type is more 

suitable for real-time SHMP system. This is because the damage propagation approach is 

directly based on real-time loading condition and damage state information. 

1.2.3. Current research in condition based damage prognosis 

As mentioned in the previous section, the aircraft industry uses safe-life, or damage-

tolerant approach for fatigue damage prognosis and residual useful life estimation (RULE). 

These predictive algorithms are generally used offline, in particular during the design stage, 

to predict the life of a structural component. Also, these models are based on assumed 
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initial conditions and fixed loading patterns. However, for a real-life structure the initial 

condition varies from time to time depending on the loading conditions, the structure was 

subjected to. This implies the need for an automated updating of initial conditions to 

life prediction algorithm. The current research on SHM can lead to a paradigm shift in 

condition based maintenance (CBM) and RULE. Based on the SHM techniques the state 

of a structure can be constantly monitored and fed to prognostics algorithms in real time 

to obtain updated information on RULE. Schwabacher [70] presented a review paper on 

data driven prognosis. As stated in reference [70], for realistic systems fault detection is 

difficult and a robust condition based prognostic framework for predicting the remaining 

time until failure is much more difficult. This is because damage prognosis is a system level 

approach, which requires highly multidisciplinary techniques to be integrated on a single 

platform. Compared to literatures available on online SHM and offline damage prognosis, 

literature on condition based damage prognosis is very limited [71]. Till today one of the 

most advanced damage detection systems, which have made the transition from research to 

practice is integrated condition assessment of rotating machinery in US Navy ships [73] and 

the HUMS (health and usage monitoring systems) program implemented on main rotor and 

gearbox components of large rotorcraft in UK [8, 9]. However, in the two above mentioned 

applications and almost in all reported SHM applications condition based prognosis remains 

elusive. To date, one of the few attempts at integrating condition based damage prognosis 

with a predictive capability is also encountered in the field of rotating machinery [74]. The 

success of SHM and prognosis in the field of rotating machinery is in some sense can be 

attributed to the availability of extensive datasets. In addition, the major parameters that 

influence damage, the operational and environmental conditions, are often well known a 
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priori and do not vary significantly. In a recent review Farrar and Lieven [72] discussed 

the concept and future directions of condition based damage prognosis, and indicated the 

dearth of publications on condition based damage prognosis. This scarcity of publications 

indicates that this technology is still in the early developmental phase and there is a need 

for considerable research. 

1.3. Relationship of Literature Review to Current Project 

From the above literature review, the following trend can be observed 

1. Majority of the literature on passive sensing based SHM is based on vibration mea

surements and mode shape estimation approaches. It is important to note that mode 

shape approach is not sensitive to smaller local damage. Also, it requires external 

excitation (such as using external shakers) of structures, which is essentially not a 

SHM approach but rather a NDI approach. 

2. Majority of the researcher on active sensing based SHM demonstrates their proposed 

techniques on simple structures. It is to be noted that real-life structures have com

plex geometry. Majority of the proposed wave based approach may not work for 

these complex structural components. In addition, majority of wave based SHM 

approach do not discuss time-series fatigue damage state prediction. They only dis

cusses, whether there is damage present or not with respect to a reference condition. 

Tracking the trend of damage growth with multiple damage cases, as encountered 

under real fatigue loading, has not been adequately addressed. 

3. In addition, majority of the reported literature either focuses on online structural 

health monitoring or offline damage prediction. Few of these works discusses an 
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integrated approach of condition based damage prognosis, which is an integration of 

online SHM and offline prognosis model, and is necessary for condition based state 

awareness and RULE. 

The objective of this research is to develop a fully integrated framework for structural health 

monitoring and damage prognosis of metallic aerospace structural components. The goal is 

to address some of the deficiencies in the current literature in order to develop an efficient 

approach for condition based fatigue damage prediction and residual useful life estimation 

in real time. 
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CHAPTER 2 

Objectives 

A comprehensive SHM-Prognosis framework for real-time health monitoring and prog

nosis of complex metallic structures under fatigue loading has been developed. The inte

grated framework estimates the current health of the structure but also forecast the future 

damage state and the associated remaining useful life. The framework comprises both of

fline and online models. 

Offline damage prognosis model: This is a slow time scale model that works on offline 

or non real-time data. This model maps the slowly evolving fatigue damage state with the 

parameters that causes its evolution. The model is developed using a Bayesian statistics 

based Gaussian process approach. The Gaussian process model maps the fatigue affecting 

parameters such as future loading and current damage condition to the future damage state 

over a high-dimensional kernel transformation. The Gaussian process model is trained us

ing damage history data either available from different test article or from the same test 

article. The future damage state of a structure is predicted using the trained Gaussian 

process model and using the anticipated future loading information. 

Online state estimation model: This is a fast time scale model, which estimates the 

current damage state of the structure using real-time fast scale sensor measurements. Both 

active and passive sensor measurements are used for current damage state estimation. Based 

on active sensor measurements both supervised and unsupervised approaches are proposed 

to estimate the current damage condition. In addition, passive sensor measurements (such 

as from strain gauges) based different online state estimation models are also proposed to 

estimate the current health of the structure. 

Condition based prognosis model: The above two models are integrated to perform 



www.manaraa.com

20 

condition based future state prediction and to estimate the associated residual useful life. 

The offline model adaptively changes its initial condition based on the current damage state 

estimated using the online model. In addition, the offline model adaptively changes its pa

rameters based on the new available state information (either estimated using the online 

model or predicted using the offline model). 

The models are validated on complex geometry Al-2024/6061 cruciform and lug joint 

specimens subjected to various loading conditions including uniaxial, biaxial, constant, 

random, and FALLSTAF flight profile loading. Different research tasks are schematically 

shown in Figure 2.1. Following are the tasks associated with this research. 

1. Chapter-3: Develop a Bayesian Gaussian process based univariate offline model to 

forecast damage under constant fatigue loading. 

2. Chapter-4: Develop a Bayesian Gaussian process based multivariate offline model to 

forecast damage under random/FALLSTAF flight profile fatigue loading. 

3. Chapter-5: Develop an active sensing based supervised online model to estimate the 

current damage condition of a structure. 

4. Chapter-6: Develop an active sensing based unsupervised online model to estimate 

the current damage condition of a structure. 

5. Chapter-7: Develop a passive sensing measurement based unsupervised online model 

that can estimate the current damage condition of a structure under constant cyclic 

fatigue loading. 

6. Chapter-8: Develop a passive sensing measurement unsupervised online model that 
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Fig. 2.1. Schematic of different research tasks. 

can estimate the current damage condition of a structure under random cyclic fatigue 

loading. 

7. Chapter-9: Develop an integrated online-offline model to forecast the future damage 

states of the structure based on current condition and future anticipated loading. 
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CHAPTER 3 

Offline Damage Prediction Using Probabilistic Gaussian Process Approach 

3.1. Introduction 

Predictive or prognosis model is an integral part of real-time SHM-Prognosis (SHMP) 

framework. The goal of this prognosis model is to works in offline mode and predicts the 

future damage condition of a structure and the associated remaining useful life. Most re

ported damage (crack) growth models are based on concepts of the continuum theory with 

the assumption that cracks propagate in an ideal continuum media. Actual metallic ma

terials, however, are composed of random microstructure [75] described by various micro 

scale parameters which can seriously affect the growth of a crack in these materials. As a 

result, the deterministic theories can only be accepted as an approximation of the actual 

random fatigue crack propagation process. The use of stochastic or probabilistic models 

thus becomes necessary to make predictions of crack growth more reliable. A comprehensive 

review of early developments on stochastic crack growth models can be found in [76]. There 

are basically two types of mathematical models in existence to estimate fatigue life of any 

metallic structure. The first employs a statistical approach in which random variables are 

introduced instead of the constants used in the corresponding deterministic crack growth 

equation. The second approach employs evolutionary methods in which the crack propa

gation is treated in a probabilistic or stochastic sense instead of a statistical one. The first 

approach needs a deterministic differential equation of the damage propagation mechanism. 

The expression for the deterministic differential equation varies from structure to structure. 

This is because of the use of a stress intensity factor that depends on the geometry of the 

structure. Estimating a stress intensity factor for each and every structure is not straight 

forward. This limits the feasibility of deterministic crack propagation based differential 
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equation approach for few standard geometry or coupons. For this reason majority of the 

available literatures on differential equation based stochastic models are limited to stochas

tic damage growth modeling of standard structural coupons [77, 78, 79, 80]. However, for 

stochastic modeling of complex structure the second approach is more suitable because the 

equivalent dynamics i.e., the crack propagation mechanism can be learned from the previous 

or history data. The history data can be obtained from previous fatigue tests data of the 

real complex geometry. Making use of a specific probability process, namely the Markovian 

process, the models with this approach strive to correlate the properties of this process 

with those from history of fatigue crack propagation. In this chapter a Bayesian Gaussian 

process [81, 82, 83, 84] approach is used, which stochastically models the damage growth 

dynamics using history fatigue test data. In the present chapter the proposed model will 

be evaluated on constant cyclic fatigue data that was obtained [80] from fatigue tests on 

standard coupons. However, in the next chapter the validation of the proposed approach 

will be performed for a complex geometry under complex state of loading. 

3.2. Theoretical Approach 

Fatigue damage propagation can be modeled either using a physics based approach or 

using a probabilistic data drive approach. The probabilistic approach is adopted in this 

thesis. Brief distinctions of both approaches are presented in the following subsection for 

completeness. 

3.2.1. Physics based damage propagation model 

The rate of fatigue crack propagation per fatigue cycle da/dN is governed by the stress 

intensity factor range AK and can be written in functional form (\I>) at a future damage 
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( ^ F W I = *{(tCff-0#i)*S} 

= *{(^nm
+T-^tT)V^} (3-i) 

where (g^)n+i is the future damage level crack growth rate, U™* and U™" are the 

maximum and minimum cyclic stress at the forward cycle respectively, F% is the current 

damage level geometric function and an is the current damage level crack length. Paris [85] 

and Paris, et al. [86] were the first to formulate the expression given in Eq. (3.1). The 

above functional form often assumed to be a simpler power function [85, 86, 87, 88] form 

can be expressed as 

( ^ ) n + i = C(AKr 

= ^{(U^-U^^a^Cm) (3.2) 

For direct crack length prediction, the equivalent from of Eq. (3.2) can be written in 

functional form as: 

an+1 = * {U™?, UZ$, dNn+1, an, C, m) (3.3) 

where, dNn+i is the number of fatigue cycles elapsed between the current damage level (i.e., 

the nth damage level) and the forward step damage level (i.e., the (n + \)th damage level). 

Many advanced crack growth models [59, 62, 90, 91, 63, 64, 92, 89] have been proposed in 
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the literature. The differences among those models are not significant; also none of them 

has a general applicability. Each one may be found reasonably satisfactory in a limited 

region or limited sets of data. 

3.2.2. Generalized Bayesian data driven model for damage prediction 

The lack of general applicability of available physics based crack growth model is due 

to the complex dependency of crack propagation on different factors such as variability due 

to (i) material (e.g., microstructure) (ii) geometric complexity (iii) manufacturing process 

(e.g., heat treatment, cold deformation) (iv) loading (v) environmental effects (e.g., tem

perature and humidity). To incorporate these factors in a damage propagation model, a 

generalized Bayesian probabilistic framework can be employed. The Bayesian framework 

is a data driven approach, which is not only easier to understand but also based on basic 

physics of damage propagation described by Eq. (3.1). The schematic of a probabilistic 

Bayesian framework for future step damage state forecasting is shown in Figure 3.1. The 

goal of a probabilistic Bayesian forecasting approach is to compute the posterior distribution 

of an unknown target, i.e., to predict / (yn+l\D - {xj,yO i=0 n _ l n , x n + i J , where yn+x 

represents either the crack length (an+i) or the crack growth rate ( ( J^ ) n + i ) at damage level 

n + 1. The (n + l)th damage level distribution is obtained based on available input-output 

data up to the current damage level (i.e., the nth damage level) D = {x;,j / ;} i = 0 n _ l n 

and future input parameter x„+i . It is noted that the input Xj at any fatigue damage 

level i is a vector and constitutes the various fatigue affecting parameters (e.g., the damage 

conditions o,, maximum and minimum loading condition U™ax, i/rnm^ e t c ^ a s di scus secl in 

section 3.2.1. Also to note that the bold faced letter used throughout this thesis represents 

vector. In the Bayesian framework, the predictive distribution of a target can be found 
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by conditioning the targets yo> ,yn-i,yn, Vn+i that are affected by the corresponding 

random inputs xo, ,xn_i,xn , x n+i. Now we can define a priori over the space of possible 

functions to model the target (crack length or crack'growth rate) as f(y\a), where a repre

sents parameters that account of modeling uncertainties in the form of curve fitting. It is 

assumed that modeling the uncertainty parameters a can account for the effect of loading 

interaction (e.g., retardation effect) in addition to modeling uncertainties. A priori noise 

function /($|/3) can also be defined, where -d is some appropriate noise function that arises 

due to scatter in material micro structure and /? is another set of hyperparameters used 

to model the uncertainty due to scatter. Now if the parameters a and /? are known, the 

conditional probability [81, 82, 83, 84] can be expressed as 

/ (yn | {x i=1,.. >n, a, /?}) = y (Y„l {Xi=i,... ,„, y, *>}) f(y\a)f(0\P)dyd0 

(3.4) 

where y n = {yo, , yn-i)2/n} a n d i? denotes the underlying function which corresponds 

to the target functions and noise due to microstructural scattering respectively. Since 

yo, ,2/n-i, and yn are conditioned random variables in the observed set of targets, the 

conditional distribution of yn+\ can be written as follows 

/ X /(yn+ll{Xi}i=l,. . . ,„+l .">0) 
f[yn+1\D = {Xi,j/i} i=1 Xn+i,a,(3)= -, r— (3.5) 

V ' /(ynl{Xi}i=l,...,n.«^J 
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Fig. 3.1. General Bayesian probabilistic framework for future step damage state forecast
ing. 

3.2.3. Damage prediction using data driven Gaussian Process (GP) approach 

To evaluate Eq. (3.5) it is necessary to evaluate the integral given in Eq. (3.4). However 

in general, Eq. (3.4) is complicated to evaluate. The standard approach to evaluate the 

integral in Eq. (3.4) is by a method called evidence maximization [81] or by numerically 

integrating it by Monte Carlo simulation [93]. However, assuming the underlying function 

yi=o,...,n-i,n,n+i,... follows a Gaussian distribution, the exact analytical form of Eq. (3.5) 

can be expressed as follows 

/ [yn\ (xi}i=l,... ,n ) Cn) - 7^ J2^dlt(cny/iexp B ( y " " riTc?b» ~ ") 
(3.6) 
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where Xj is the ith input, /z is the function mean and C n is a n x n covariance matrix which 

is function of parameters a and /3. The individual elements Cij of the covariance matrix 

C„ is a measure of "linear dependence" between the two random variables Xj and Xj and 

they are linked to the target function y through the parameter 9. The covariance between 

two random variables x; and Xj, with their respective expected values \iXi and [iXj, can be 

found as 

c^ = <(xi - /xXi)(xj - iiXj)) (3.7) 

3.2.3.1. Covariance matrix to kernel matrix 

The expression given in Eq. (3.6) holds good if there exists a "linear dependence" 

between the two random variables Xj and Xj. However, in general for fatigue damage 

modeling, the input variables Xj and Xj may not have a linear relationship. For instance, if 

the input-space only consists of previous level crack lengths, then the input-space variables 

for ith and j t h damage level can be given as Xj=n_i = an-\ and Xj=n = an. However, it is 

to be noted that the relation between an_i and an is not always linear. The nonlinearity 

is more pronounced during the unstable and transient damage growth regime. In addition 

to crack length, if other parameters such as loading information is introduced in the input-

space, the relation between input variables x$ and XJ becomes more complex. To avoid 

the nonlinearity problem, the expression given in Eq. (3.6) can be reformulated using a 

high-dimensional transformation of the original input-space. The schematic of the high-

dimensional transformation $ is shown in Figure 3.2. The high-dimensional transformation 

$ [94, 95] can be performed using an assumed kernel function fc(x;,Xj,0). 



www.manaraa.com

29 

. v \ 

1 \ 1 I 
1 t 

$ 

s 

s 
s \ s s 

N S 
S S 

\ " \ 
N 

\ 
S 

\ 

&*j) 

R 00 

\ 

s 
> V 

\ 

\ * 

S 

Fig. 3.2. Schematic of high-dimensional transformation of input space 

With the high-dimensional transformation, the covariance matrix Cn term in Eq. (3.6) can 

be replaced by the kernel matrix K„ and Eq. (3.6) can be rewritten [81, 82, 83, 84] as 

/ (y«l { * W , n ,Kn) = {27v)n/2d
e
et{Kn)1/^p (4<y« - /*)TK^(yn - /*)) 

(3.8) 

3.2.3.2. Mean and variance of the predicted damage at (n + l)th damage level 

The individual elements kij of the kernel matrix Kn can be found from a parameterized 

kernel function that will be described in the next section. Assuming a zero mean function 

distribution Eq. (3.8) can be written as 
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/ [yn+i\D = {xi,2/i} i=1)ii-)n,xn+i,fcmn(a;i,x-?-,0)ij=i i2,..„+iJ 

dBt{Kn) -exP(-iyn+l-/n+l)2) (3.9) 
V (27r)det(Kn+1) ^ 2a2n+ i 

where /j,n+i is the predicted mean damage (of either crack length an+\ or crack growth rate 

(377)1+1) a t n + 1th fatigue damage level and is given by 

fin+l = k T K „ V „ ; fet = fc(xn+l,Xi)i=l>2,...n (3.10) 

whereas a^+i is * n e associated predicted variance at n + 1th fatigue damage level and is 

given by 

°"n+l = K - k T K n
l k ; fci = fc(Xn+l,Xj)i=li21...n; « = c ( x n + l , X n + l ) (3.11) 

In Eq. (3.10) and (3.11), Kn , k and K are the partitioned matrix/vector of the n + 1th 

fatigue damage level kernel matrix. 

3.2.3.3. Kernel function selection 

There are many possible choices of kernel functions [84]. From a modeling point 

of view, the objective is to select a kernel a priori, which agrees with the assumptions 

and mathematically represent the structure of the process being modeled. Formally, it is 

required to specify a function that will generate a positive definite kernel matrix for any set 

of inputs. In more general term the high-dimensional transformation through the assumed 

kernel function should satisfy Mercer's theorem of functional analysis [96]. For any two set 
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of input vectors X{ and Xj a kernel function used in Eq. (3.8) through Eq. (3.11) has the 

following form 

KyXi, Xj, \yj — Ky\Xi, Xj^ t /J ~r fCscatter\%it ^ji ^) K^'^^1) 

where ky is associated with the interpolation function y and kscatter is associated with the 

scatter model. It is to be noted that in the present case of GP damage modeling the scatter 

arises from micro-structural variability. Whereas for modeling the interpolation function, 

a neural network based multi layer perceptron (MLP) kernel is used. The MLP kernel 

function [97] has the following form. 

ky(xi, Xj^ 0 ) = QpSin < 
Xj "w^-j (3.13) 

{ yj(l + X^XiXl + XJ^XJ) J 

Where 0p and 0W respectively symbolizes process and width hyperparameter. Also in Eq. 

(3.12) the second term associated with the scatter model only contributes to the diagonal 

term of the kernel matrix and for an input independent scatter model kscatter, it can be 

written in terms of a hyperparameter 6Scatter such that 

CscatteryErni-^m*-?) — " i j ^scatter \^'^J 

where Sij is the Kronecker delta with value one when i = j and zero when i ^ j . 

3.2.3.4. Hyperparameter determination 

So far we have only considered the properties of the prediction model for fixed values 

of the hyperparameters. In this section we will discuss how to obtain the hyperparameters 
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0 for a fixed training data set D = {xj,j/,}i==1 n. Ideally, one should integrate over all 

possible hyperparameters in order to obtain the best possible predictions of the function 

value yn+\ at (n + l)th damage level. This can be written as, 

f(yn+1\D,xn+1,K(-)) = J f(yn+l\D,xn+1,K(-),e)f(@\D,K(-))d@ (3.15) 

The above expression is as complex as the one given in Eq. (3.4) and also difficult to 

evaluate for a complex problem with several hyperparameters and with multiple input-

space variables. Out of the two possible approaches (e.g., the Maximum evidence [81] and 

the Monte Carlo [93] approach) only the use of the maximum evidence approach will be 

discussed. Using maximum evidence approach, Eq. (3.15) can be written in its approximate 

form as, 

/ (yn + 1 | D, x n + i , #(•)) = / (y„+i|A x n + i , K(-), QMAp) (3.16) 

The approximation in Eq. (3.16) is based on the assumption that the posterior distribution 

over 0 , i.e., / (0|.D, K(-)), has a sharp peak around QMAP- This approximation is generally 

good and predictions are often found very close to those obtained using the true predictive 

distribution [98]. To find the peak location of f (Q\D,K(-))y the posterior distribution 

needs to be optimized and the posterior distribution can be written as, 

/ (©ID, *( .)) = -±— J-r (3.17) 
/(ynl{xOi=1,2,...n,#(-)) 

In Eq.(3.17) the denominator (i.e., evidence) is independent of 0 and can be ignored 

in the optimization process. On the other hand, the other two terms, the likelihood 

/ (y n | {xj} i = 1 2 n , K(-), 0 j and the prior / (0) , need to be considered in the optimization 

of / ( 0 | A K(-)). With the assumption that all 2/i=i,2...n follow a Gaussian distribution and 



www.manaraa.com

33 

using Eq. (3.8), the logarithm of the objective function can be written as 

L = Log (f(@\D,K (•))) = - ±Log(detKn) 

- \yT
nK-l

an-^Log{2^) + Logf{Q) (3.18) 

The log-likelihood function L in Eq. (3.18) is generally multimodal and can be optimized 

using any multivariate optimization algorithm. In the present work the conjugate gradient 

method is used to optimize the log-likelihood function and to obtain the optimized hy-

perparameters. Note that it is common practice [98] to ignore the log prior term in Eq. 

(3.18) due to the lack of knowledge about G. The resulting solution may not be always a 

realistic solution, however it can be assumed that Logf (O) is implicitly modeled through 

the optimization of the log-likelihood L. 

3.3. Numerical Results 

Different numerical studies are performed to evaluate the GP damage prediction model. 

First, a constant cyclic fatigue test data set, available in the literature, is considered. It 

is to be noted that generation of a statistical meaningful data set for probabilistic fatigue 

modeling is highly time consuming and expensive. Therefore there are only few data sets 

available in open literature. Among them, the most famous data set perhaps is the one 

presented by Virkler et al. [75] more than thirty years ago. Two more recently used data 

sets include one reported by Ghonem and Dore [56], and the other released by the Flight 

Dynamics Laboratory of the US Air Force [77]. All the above mentioned data sets were 

generated under constant cyclic fatigue loading. Recently Wu and Ni [80] published a 

statistically meaningful data set based on constant cyclic fatigue loading. They presented 

the test data both in pictorial and tabular form. This tabular test data is considered for the 
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present numerical validation. Wu and Ni performed thirty replicated constant amplitude 

fatigue crack growth tests to generate a statistical meaningful data set. Compact tension 

(CT) specimens cut from a 2024-T351 aluminum alloy plate were used for the fatigue crack 

growth tests. The dimensions of the specimens were 50.0 mm wide (counting from the 

loading line to the back face of the specimen) and 12.0 mm thick. The pre-cracking test 

started with a crack length of 15.0 mm and extended to 18.0 mm in length. Sinusoidal 

signals with maximum amplitude of 4.5 kN, minimum of amplitude 0.9 kN, and frequency 

of 15 Hz were used as the input loads during both the pre-cracking and fatigue crack growth 

tests. The crack sizes were measured from the images taken by a microscope mounted on 

a traversing system. The specimens were tested and the corresponding measurements were 

taken until the specimens fractured. The numerical value of the different crack lengths up 

to 40 kcycles are reported [80]. The number of fatigue cycle versus crack length is shown 

in Figure 3.3. The equivalent crack growth rates are also estimated and plotted in Figure 

3.4. 

3.3.1. Input-output data for Gaussian process prediction 

The crack growth and its rate data are used as the GP input-output data. It is to be 

noted that the GP damage prediction model is based on the assumption that crack growth 

and rate data follows a Gaussian distribution. For the effective use of a GP prediction 

model it is important to check the probability distribution of the original crack growth and 

rate data. 
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Fig. 3.3. Original crack growth data (The test data is taken from the reference by Wu 
and Ni [80]. 
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Fig. 3.4. Crack growth rate of all 30 specimens estimated based on the original crack 
growth data shown in Figure 3.3 
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3.3.1.1. Probability distribution check of original crack growth and its rate data 

The probability distribution of crack growth and its rate at different cycles are plotted. 

Figure 3.5 shows the probability density function (pdf) of the crack growth data at two 

representative fatigue cycles, N=30000 and N=35000 cycles. Similarly, Figure 3.6 shows the 

probability density function (pdf) of crack growth rate data at two representative fatigue 

cycles, N=30000 and N=35000. From Figure 3.5, though it can be seen that the pdf 

distribution has an overall bell shape, which could be disguised by a Gaussian distribution, 

the pdf curves appear to be more flat towards the right. These right tailed pdf curves more 

closely resembles the pdf curves of a log-normal distribution. Similarly from the crack 

growth rate pdf curves shown in Figure 3.6, it can also be seen that pdf curves are flatter 

towards right. The above observations indicate that both crack growth and its rate data 

follow, more log-normal distribution than Gaussian distribution. 

3.3.1.2. Data scaling of original crack growth and its rate data 

For the effective use of GP damage prediction model it is required to perform appropri

ate scaling of the original data. In this work two types of scaling have been used, min-max 

scaling of the original data followed by then a log scaling of the scaled data. The min-max 

scaling is performed for better synchronization and comparison of damage states estimated 

using the different techniques. In the present case of crack length, the min-max scaling is 

performed by normalizing the original crack length against the maximum and minimum 

possible crack length to have a scaled crack length between 0-1. This 0-1 scaled crack 

length is helpful in integrating one data set with other data set measured using different 
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Fig. 3.5. Probability distribution of original crack growth data at N=30000 and N=35000 
fatigue cycle. 

0.4 

. ^ 0 . 3 
a 

. ^ 0 . 2 
•mm 
- Q 

£ 0.1 

0 
0 

$ m o at 30000 cycles 
o • ( • at 35000 cycles 

o 
o • 

o 
o ® 

© 

o 
1 2 3 

Original da/dN (mm/cycle) x l O 
4 

-4 

Fig. 3.6. Probability distribution of original crack growth rate data at N=30000 and 
N=35000 fatigue cycle. 
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estimation techniques and different units. In this chapter visual crack lengths are consid

ered, which are in millimeters (it is to be noted that most of the SHM literatures presents 

the state estimation techniques that quantify the damage between 0-1). In the present case 

the original crack growth data shown in Figure 3.3 are scaled against the maximum crack 

length of 37.34 mm and minimum crack length of 0 mm. The min-max scaled crack growth 

data of the original crack lengths (refer Figure 3.3) is shown in Figure 3.7. The correspond

ing min-max scaled crack growth rate data are shown Figure 3.8. It is to be noted that 

the min-max scaling does not have any statistical significance. This can be evident from 

the pdf plots shown in Figure 3.9 and 3.12. The pdf curves plotted for min-max scaled 

crack growth data (refer Figure 3.9) resembles the pdf curves for original crack growth data 

(Figure 3.5). Similarly the pdf curves plotted for min-max scaled crack growth data (refer 

Figure 3.12) resembles the pdf curves for the original crack growth data shown in Figure 

3.6. To use the proposed GP damage model it is required to convert the original data such 

that it follows a Gaussian distribution. This is achieved by performing logarithmic scaling 

of the min-max scaled data. The corresponding pdf curves of the log-min-max scaled crack 

growth data are shown in Figure 3.11. Comparing Figure 3.11 with Figure 3.5 it can be 

seen that the pdf curves of the log-min-max scale crack growth data better resembles with 

the bell shaped curve followed by Gaussian distributions. Similar comparison can be made 

between Figure 3.12 and Figure 3.6 and it can be seen that the log-min-max scaled crack 

growth data better resembles Gaussian distribution than the original data. 
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Fig. 3.7. Min-max scaled crack growth data of the original crack growth data shown in 
Figure 3.3. 
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Fig. 3.8. Min-max scaled crack growth rate data of the original crack growth rate data 
shown in Figure 3.4. 
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Fig. 3.9. Probability distribution of min-max scaled crack growth data shown in Figure 
3.7. 

3.3.1.3. Gaussian process input-output data 

Once the log-min-max scaling is performed, the scaled data are used to make the GP 

input-output data set. The (n + \)th damage level crack length (i.e., an+\) depends on 

the current (i.e nth) damage level crack length (i.e an) and future ((n + l)th) damage level 

loading information (such as cyclic maximum and minimum load) and number of fatigue 

cycles elapsed (AiV) between the nth and (n + l)th damage level. Since in the present 

case the constant fatigue cyclic data are considered, the loading information such as cyclic 

maximum and minimum load remain constant. Since the loading information remains 

constant for statistical point of view, it is not necessary to consider the loading information 

in the GP damage prediction model. Hence in the present constant cyclic fatigue prediction 

of the direct crack length (i.e an+i), the input-space x\ of the GP model is only modeled 

with the previous fatigue cycle crack length and number of fatigue cycles elapsed (AiV) 
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Fig. 3.12. Probability distribution of log-min-max scaled crack growth rate data. 

between nth and (n + l)th damage level. Crack growth data from different specimens are 

considered to train the GP model. A chart of the input-output relation for direct crack 

growth prediction has been depicted in Eq. (3.19). 

ak,o AiVfc,i 

• • 

Ofc.n-l ANk,n 

Ofc,l 

Ofc,n 

Gfc,n+1 —? 

(3.19) 

In Eq. (3.19), the first subscript 'k' symbolizes the data from different specimens. Contrary 

to the direct crack growth prediction, for crack growth rate prediction it is not necessary to 

consider the number of fatigue cycles elapsed (AN) between nth and (n + l)th damage level. 

The equivalent input-output relation for crack growth rate prediction has been depicted in 



www.manaraa.com

43 

Eq. (3.20). 
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(3.20) 

3.3.2. One-step ahead future damage state prediction 

One-step ahead damage state such as crack length or crack growth rate are predicted 

using the input-output relation depicted in Eq. (3.19) or in Eq. (3.20). Both GP interpo

lation and extrapolation is performed to predict future damage states. The details of the 

numerical results are discussed in the following subsections. 

3.3.2.1. Gaussian process interpolation: crack growth prediction inside the training horizon 

Gaussian process interpolations are performed by training the GP predictive model 

with fatigue test data from the entire fatigue envelope (or cycles) within which the test 

case prediction are performed. Two different cases are studied. First, crack growth data 

(up to 40 kcycles) from all the 30 specimens (Figure 3.3) are used for training the GP 

model and then to predict the same data set within 40 kcycles. For the second case, crack 

growth data (up to 40 kcycles) from specimen number 1 to 29 are used for training the 

GP model and then the trained GP model is used to predict the crack growth (up to 

40 kcycles) of specimen number 30. The first case prediction is performed to check how 

efficiently the GP model can regenerate the overall scatter of the original crack growth 

curves. Figure 3.13 shows the corresponding overlapped prediction results from all 30 

specimens. It is to be noted that in the overlapped plot there are 30 different mean crack 

growth predictions and their individual 2a band around their predicted mean crack length. 
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The individual la band includes both modeling error as well as the contribution of scatter 

due to micro-structural variability. The scatter from microstructural variability is modeled 

by the GP hyperparameter 6scatter discussed previously in the theoretical sections. Without 

considering scatter contribution, the corresponding mean prediction and their associated 

2cr error band is shown in Figure 3.14. Comparing the mean prediction and actual crack 

growth as shown in Figure 3.14 it can be seen that the GP model can regenerate the overall 

scatter of crack growth curves. Also, from the 2a error band shown in Figure 3.14, which 

only includes the modeling error it can be found that (up to 40 kcycles) the modeling error 

is quite minimal. To further check the correctness of GP prediction a second interpolation 

type prediction is performed. For this purpose crack growth data from specimen number 1 

to 29 (up to 40 kcycles) are considered for training the GP model and the crack growth of 

specimen number 30 is predicted within 40 kcycles. The predicted mean crack growth and 

the associated 2a band is shown in Figure 3.15. It is to be noted that the 2a band in this 

figure includes contributions from modeling error as well as contribution from estimated 

scatter (represented by hyper parameter 0scatter)- The corresponding 2a band contributed 

only by modeling error is shown in Figure 3.16. From this Figure it can be seen that there 

is a good correlation between actual and predicted crack length. In addition, it is found 

from the 2a band that the modeling error contribution is minimal. It is to be noted that 

with difference to the previous interpolation case, where the training data set and test data 

set are from the same specimens, in this interpolation case the test specimen (here for 

specimen, number -30) is different from the training specimens (here for specimen, number 

-1 to 29). 
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Fig. 3.13. Gaussian process prediction (up to 40kcycle) for all 30 specimen considering 
training data from all 30 specimens. The la error bound includes contribution from both 
modeling error as well as from the scatter hyperparameter 

3.3.3. Gaussian process extrapolation: prediction outside the training horizon 

Previously GP prediction showed within the training horizon i.e., within the fatigue 

cycle up to which point training data was available. The extrapolation capability of the 

GP model beyond the training regime is presented in this section. Crack growth data up to 

40 kcycles obtained from all 30 specimens are used to train a GP model. Then, using this 

GP model the one-step ahead prediction is performed for three different specimens beyond 

40 kcycles and up to total failure. Figure 3.17 shows the corresponding mean prediction 

and the associated la confidence band. The figure shows that the trend of the predicted 

mean crack length follows the actual crack growth curves. However, from the figure it can 

be seen that there is a larger discrepancy between predicted mean and actual crack length 
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Fig. 3.14. Gaussian process prediction (up to 40kcycle) for all 30 specimens considering 
training data from all 30 specimens. The la error bound includes contribution only from 
modeling error 

a a 

30 

28 

26 

18 

2 a bound with scatter 
[i—prediction 

• fx—actual 

1.5 2.5 3 
No. of cycles 

3.5 

x 10 
4 
4 

Fig. 3.15. Gaussian process prediction (up to 40kcycle) for specimen no 30 considering 
training data from specimen number 1-29. The 2cr error bound includes contribution from 
both modeling error as well as from the scatter hyperparameter 
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Fig. 3.16. Gaussian process prediction (up to 40kcycle) for specimen number 30 consid
ering training data from specimen number 1-29. The 2cr error bound includes contribution 
only from modeling error 

in the extrapolation regime than in the interpolation regime. This can be attribute to two 

major reasons. First, there was no training data available in the extrapolation regime, 

which leads to the discrepancy. The second cause is that the training data was available 

in a more stable or linear regime, and prediction was performed in an unstable and in 

a nonlinear damage growth regime without having any prior information. This is more 

evident from the bottom most crack growth curve shown in Figure 3.18. From the figure it 

can be seen that from 40 kcycles to 60 kcycles the bottom most curve follows a stable crack 

growth regime, and there is good correlation between predicted and actual crack growth 

in this regime. After 60 kcycles it is observed that damage propagation becomes more 

unstable and the predicted crack growth deviates increasingly from the actual value. Also, 

comparing Figure 3.17 with Figure 3.18 it can be seen that the width of the 2a confidence 
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band does not change much in the extrapolation regime even after removing the scatter 

contribution from the confidence band. In other words the modeling error contributes more 

significantly to the 2a confidence band in the extrapolation regime. Such discrepancy in 

prediction can be reduced by including at least one data set that encompasses the entire 

fatigue damage envelope to the training set. To verify the above claim one data set beyond 

40 kcycles and up to total failure (in this case the bottom most crack growth curve shown 

in Figure 3.17) is added to the previously mentioned training data set. The corresponding 

prediction for two different specimens for their entire fatigue life is shown in Figure 3.19. 

This figure shows the 2a confidence band with both modeling error and scatter contribution. 

The corresponding 2a confidence band with only modeling error contribution is shown in 

Figure 3.20. Comparing both the figures it can be seen that not only the mean prediction 

better matches the actual value, but also the width of 2a confidence band drastically reduces 

due to reduced modeling error. Similar approaches can be followed to predict damage in 

real-life situations for which at least one data set is available for the entire fatigue regime. 

For example, majority of aircraft manufacturers performs at least one full scale fatigue test 

for the study of fatigue properties of its critical components. These full scale fatigue test 

data can be used for on-board or real-time damage prediction. 
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Fig. 3.17. Gaussian process prediction (before and after 40 kcycle) for 3 specimens con
sidering training data from other 27 specimens (only up to 40 kcycle). The 2a error bound 
includes contribution from both modeling error as well as from the scatter hyperparameter 
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Fig. 3.18. Gaussian process prediction (before and after 40 kcycle) for 3 specimens 
considering training data from other 27 specimens (only up to 40 kcycle). The 2a error 
bound includes contribution only from modeling error 
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Fig. 3.19. Gaussian process prediction (before and after 40 kcycle) for 2 specimens 
considering training data from other 27 specimens (only up to 40 kcycle) and one specimen 
beyond 40 kcycle. The 2a error bound includes contribution from both modeling error as 
well as from the scatter hyperparameter 
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Fig. 3.20. Gaussian process prediction (before and after 40 kcycle) for 2 specimens 
considering training data from other 27 specimens (only up to 40 kcycle) and one specimen 
beyond 40 kcycle. The 2a error bound includes contribution only from modeling error 
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3.3.3.1. Crack growth rate prediction 

Similar to the direct crack growth prediction, GP model can be used to predict one-

step ahead crack growth rate i.e ( ( J^ ) n + i ) at (n + l)th damage level. For crack growth rate 

prediction, input-output relation given by Eq. (3.20) can be used. Two crack growth rate 

prediction cases are discussed. First, is the GP interpolation, where the GP model is used 

to predict crack growth rate within the training horizon. In the second case, the GP model 

is used to extrapolate crack growth rate outside the training horizon. For the interpolation 

case the GP model is trained using the crack growth data from all 30 specimens up to 40 

kcycles. The corresponding maximum crack length is approximately 28 mm (refer Figure 

3.3). Using this trained GP model crack growth rates are predicted for one specimen beyond 

40 kcycles up to final failure. The corresponding crack lengths (an) versus predicted mean 

crack growth rates ( ( ^ )n+ i ) ) are shown in Figure 3.21. This figure also shows the 2CT 

confidence bound that includes both modeling error as well as contribution from scatter. 

Although from the figure it can be seen that there is a good correlation between predicted 

and actual rate below the crack length of 28 mm (equivalent to 40 kcycles), there are larger 

discrepancies in the extrapolation regime, which is beyond the crack length of 28 mm. This 

is more evident from the larger 2a confidence band in the extrapolation regime as seen in 

Figure 3.22. It is noted that the confidence band shown in Figure 3.22 is only accounts for 

modeling error. Similar to the case of direct crack growth prediction, GP model capability 

for crack growth rate prediction can be improved by including at least one complete (up 

to failure) fatigue test data set in the training data set. For the present case the complete 

crack growth data of a specimen (in this case the bottom most crack growth curve data 

as seen in Figure 3.17) is added to the previously mentioned training set (that includes 
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Fig. 3.21. Gaussian process crack growth rate prediction of a specimen considering 
training data from all 30 specimens (only up to 40 kcycle). The 2a error bound includes 
contribution from both modeling error as well as from the scatter hyperparameter 

crack growth data of all specimens up to 40 kcycles). The corresponding GP crack growth 

rate prediction is depicted in Figure 3.23. This figure also shows the la confidence band 

with contribution from both modeling error as well as from scatter hyperparameter. The 

la confidence band with only contribution from modeling error is shown in Figure 3.24. 

Comparing Figures 3.23 and 3.24 with Figures 3.21 and 3.22, it can be seen that inclusion of 

one full scale fatigue data drastically reduces the 2a confidence band attributed to modeling 

error. 
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Fig. 3.22. Gaussian process crack growth rate prediction of a specimen considering 
training data from all 30 specimens (only up to 40 kcycle). The 2a error bound includes 
contribution only from modeling error 
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Fig. 3.23. Gaussian process crack growth rate prediction of a specimen considering 
training data from other 30 specimens (only up to 40 kcycle) and one specimen beyond 40 
kcycle. The 2a error bound includes contribution from both modeling error as well as from 
the scatter hyperparameter 
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Fig. 3.24. Gaussian process crack growth rate prediction of a specimen considering 
training data from other 30 specimens (only up to 40 kcycle) and one specimen beyond 40 
kcycle. The 2a error bound includes contribution only from modeling error 

3.4. Conclusion 

A GP approach has been developed for the one-step ahead prediction of fatigue damage 

states. The GP model is validated on constant cyclic fatigue test data available in the 

literature. From the numerical study it is found that pdf of original crack growth data 

more resembles log-normal distribution than pdf of Gaussian distribution. Hence to suit 

the GP model the original crack growth data transformed to normal distribution data 

by performing appropriate log scaling. In addition GP model is validated for future step 

prediction of crack growth or its rate. From the GP prediction model it is found that there 

is a good correlation between predicted damage states and its actual experiment value. 

The prediction results indicate that the GP is able to capture the nonlinear dynamics of 

the fatigue crack growth propagation mechanisms. Furthermore, it is observed that, the 
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performance of the GP predicted can be drastically improved by including at least one 

data set over the entire fatigue life to the training data set. The GP model is a Bayesian 

statistics based model that can incorporate material scatter in the modeling process. Also 

being a data driven approach it can easily model complex geometry and loading condition, 

which will be discussed in the following chapter. Furthermore, the proposed GP model is 

computationally inexpensive compared to any finite element based damage model. Hence 

the proposed GP model can easily be implemented in on-board system for real-time damage 

prediction. 
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CHAPTER 4 

Offline Damage State Prediction of Complex Structure under Complex State of Loading 

4.1. Introduction 

In the chapter 3 fatigue damage prediction under constant cyclic loading was discussed. 

However, aircraft structural components are required to achieve long lives under demanding 

operational conditions consisting of highly complex and variable spectrum loading. Tra

ditionally, the design of aircraft structural components against fatigue loading has been 

based on an estimated load spectrum using some form of damage accumulation rule, usu

ally a modification of Miner's rule [51]. Miner's rule is applied using S N diagram based on 

different constant amplitude fatigue tests. It is widely accepted that constant amplitude 

loading insufficiently represents the intrinsic dynamic behavior (such as transient loading 

effects in the fatigue crack growth rates) that occur with variable amplitude service loading 

[100]. For example, constant amplitude loading, can not simulate a service load history, 

such as for aircraft wing structures subjected to random gust load. Consequently, accurate 

fatigue predictions are unlikely because the available constant cycle fatigue test data are 

not truly representative of the in service loading. The application of flight condition tests 

to fatigue problems is becoming a widespread procedure both in the aircraft industry [67] 

and in aeronautical research laboratories [101]. For several reasons the flight condition test 

has replaced the conventional fatigue test with a constant mean load and a constant load 

amplitude (usually indicated as a 'constant amplitude test') [101]. The most important 

reason being the load/time history in a flight condition test can be a more realistic sim

ulation of the load history in service. However, the definition of a load/time profile for 

a flight condition test is not as simple as it is for a constant amplitude test load profile 

and load sequences have to be specified. Two standardized load histories for aircraft wings 
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were developed in recent years. The load history Transport Wing Standard (TWIST) was 

proposed as representative of the wing tension skin of a transport aircraft [102]. Fighter 

Aircraft Loading STAndard For Fatigue (FALSTAFF), is typical to the wing root area of a 

fighter-type aircraft [103, 92]. Both of these random flight profile load histories are widely 

used in numerous fatigue research programs. Though a significant amount of research has 

been reported [89, 100, 101] on fatigue life modeling under random and flight profile loading, 

a majority of these models are based on standard test coupons [104]. A common practice 

in aerospace applications such as in the case of fatigue life modeling of C-130 aircraft [67] is 

to use the coupon test crack growth model, but augmented with real initial flaw size that is 

directly estimated either from the individual component fatigue test or from the full scale 

fatigue test of the entire aircraft. The crack growth models are based on stress intensity 

factors [57]. It is to be noted evaluation of stress intensity factor for each and every critical 

structure is a nontrivial task. Due to the unavailability of stress intensity factor data for a 

complex structure, its future life is often estimated by over simplifying the geometry. Thus 

the crack growth model of the real structure is approximated using the crack growth model 

of standard coupons. However for complex structure the damage initiation and growth 

pattern can be different from the coupon structure. Although finite element (FE) based 

crack growth model [105] can be used to model complex structures, currently there is no 

single FE based damage propagation model available that can be useful in real-time on

board applications. The major drawback in FE based physics models is due to the high 

computational requirements that make it unsuitable for on-board applications. To avoid 

the problem in FE based approach, probabilistic data driven approach such as Gaussian 

process [83, 81, 82, 84] can be used to model the fatigue damage growth. The details of the 
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approach are presented next. 

4.2. Theoretical Approach 

Damage propagation in complex structure under any real-life random loading can be 

modeled using the Gaussian process (GP) approach. Recall that a GP model was used to 

model the constant cyclic and uniaxial fatigue loading in chapter 3. However, in the present 

case, the same GP model is used to model the fatigue damage under variable cyclic as well 

as multi-axial fatigue loading. For the multiaxial (in this case biaxial) random loading case 

with target or function value being crack length (a^), the input-output relation can be 

expressed as follows. 

n, „ rrmax rrmin rrmax rrmin j / \ r , , 
°*.0 U*k,l UXk,i UVk,l UVkA d i V f c . l 

(*,„_! U™ U™ U™ U™ dNk,n 

o-k,\ 

ak,r, 

} (4-1) 

Vk,n Vk,n 

_, rrmax rrmin rrmax rrmin JW, _ . „, , 
ak,n ^xfc,„+1

 uxk,n+1
 Uyk,n+i Uyk,n+i d"k,n+l « J -» [aktn+1-i 

In the above expression U™™-, U™™,U™®*, U™™ symbolize the X-axis maximum and 

minimum and Y-axis maximum and minimum load at different fatigue cycle, respectively. 

Also, dJV(.) symbolizes the number of fatigue cycles elapsed between the current and forward 

step damage level. Furthermore, the fatigue affecting parameters should be a measurable 

quantity and should be time variant. If these parameters are time invariant, from a statis

tical modeling perspective, there would be no need to consider these parameters. Equation 

4.1 represents a generic input-output framework. Other fatigue affecting parameters such as 

temperature and humidity can also me modeled in to the input-output framework given by 

Eq. (4.1). However, in the present work, the test was performed under laboratory condition 

with minimal change in temperature and humidity change, and hence not considered in the 
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present formulation. Once the input-output variables are known, a similar procedure as 

discussed in chapter 3 can be used to model the multivariate fatigue damage process. The 

major difference between the procedure used in the previous chapter and the present chap

ter is the individual row of the input matrix as shown in the left side of the Eq. (4.1). In 

the present biaxial random loading case for example at nth damage level the corresponding 

input vector xi=n is given by xn = {an,U^1,U^1,U^t
1,U^1,dNn+i}. Whereas, for 

uniaxial constant cyclic case since the mean load does not vary and the loading is uniaxial, 

the corresponding input vector is denoted as xn = {an, dNn+i} in chapter 3. 

4.3. Numerical Results 

4.3.1. Fatigue experiment and data collection 

Numerical tests are conducted and results are presented to demonstrate the validity 

of the developed data driven approach for any load patterns. To validate the prognosis 

algorithm, three fatigue tests were performed on an A1-2024-T351 cruciform specimen un

der biaxial loading. The loaded cruciform specimen in an MTS biaxial fatigue test frame 

can be seen in Figure 4.1. The specimens were subjected to either random loading or flight 

profile FALSTAFF [103, 92]. To generate the correct load pattern, first finite element stress 

analysis was performed to evaluate the yield stress. The geometry of a typical cruciform 

specimen and the finite element stress analysis contour plot is shown in Figure 4.2. From 

the stress analysis results, the yield load was found to be 7200 lbf. Based on this limiting 

yield load both random and FALSTAFF flight profile load patterns were generated. The 

original patterns were generated using MATLAB and then coded to the MTS controller. 

A typical one block (equivalent to 300 cycles) of original random load pattern is shown in 

Figure 4.3. Also a typical four block (equivalent to 308 cycles) FALSTAFF loading profile is 
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shown in Figure 4.4. It is to be noted that for random loading case all blocks are nonrepet-

itive, i.e. individual blocks are different from each other. However, for FALSTAFF loading 

all blocks are repetitive. The random loading patterns were generated using MATLAB 

random number generation command, keeping a maximum load limitation equal to 80% of 

the yield load (i.e. 7200 lbf) and a minimum load limitation of equal 6.6% of the yield load. 

For the FALSTAFF loading case the normalized FALSTAFF profile presented by Schijve, 

et. al. [7] is modified, keeping a maximum load limitation equal to 80% of the yield load 

and a minimum load limitation equal to 6.6% of the yield load. Additionally, to speed up 

the fatigue process the extreme low loads in original FALSTAFF profile were augmented 

with additional load. For this reason, in the later parts of this chapter the flight profile 

load patterns are referred as modified FALSTAFF loading rather than FALSTAFF load

ing. The biaxial machine actuator was operated with a fixed frequency of 10 Hz. Both the 

x-axis actuator and y-axis actuator of the biaxial frame were subjected to in-phase fatigue 

loading. Moreover, a hole in the center of the specimen was made to create crack initiation 

in the web area of the cruciform specimen. To accelerate damage growth, an EDM notch 

of 1 mm length was made at the bottom right quadrant of the central hole (45° to the 

vertical axis). A 48 channel NI PXI system was used to collect the MTS load cell (X and 

Y) measurements. A high resolution SONY camera was used to visually monitor the crack 

growth. The data acquisition system and the computer capturing the visual image were 

synchronized with the biaxial machine controller to collect the time synchronized data/ 

image at a specified interval of 300 cycles (one block) for the random load and 308 cycles 

(four blocks) for the modified FALSTAFF. Three specimens (named Cruciform-7, 8, 11) 

were tested with Cruciform-7 and 8 under random load and Cruciform-11 under modified 
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FALSTAFF. Although there was a central hole and an EDM notch, all specimens were 

fatigued under constant amplitude loading of 480-4800Ibf to further accelerate the damage 

process. The constant cycle fatigue tests were performed for 20-30 kcycles to achieve a 

precrack of 1-3 mm. For the demonstration of the prognosis algorithm crack lengths were 

estimated at discrete instances (fatigue cycles). Also at those instances the X and Y-axis 

loads were estimated from the acquired load cell signals. It is noted that in real aircraft [3] 

the loads can be estimated from the real-time sensor (e.g. from pressure, altitude, weight 

sensors) measurements. In addition, following a standardized procedure, the estimated 

crack length and real-time loads are respectively normalized against the maximum crack 

length (experimentally found to be 72mm) and yield load (obtained from FE simulation 

as 7200 lbf). This procedure of load normalization will during integration of the present 

data sets with future generated data sets with similar or different loading conditions. The 

normalization of crack growth is performed to replace the current approach of visual mea

surement (for estimating the crack length) with the online structural health monitoring 

(SHM) based approach. Furthermore, majority of SHM algorithms define damage indices 

that vary between 0-1. The SHM model integration with the offline prognosis model will 

be discussed in the later part of this dissertation. 
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Fig. 4.1. Biaxial/Torsion Experimental set-up 
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Fig. 4.2. a) Al-2024 cruciform specimen b) Stress analysis contour plot 
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4.3.2. One-step ahead future state prediction 

The supervised Gaussian process damage predictions are performed for following three 

different cases. 

1. Case-I: prediction under random loading with training data from a different specimen 

but tested under same random loading blocks. 

2. Case-II: prediction under modified FALSTAFF loading with training data from a 

different specimen and tested under random loading. 

3. Case-Ill: prediction under random loading with training data from a different speci

men and tested under modified FALSTAFF loading. 

Case-I: Two cruciform specimens (cruciform specimen 7 and 8) were tested under same 

random loading blocks. The fatigue test data acquired from cruciform 8 is considered for 

training the GP model. Whereas, data acquired from cruciform 7 is considered as test 

(or target) case. Figures 4.5 and 4.6 show the prediction results for cruciform 7 specimen. 

At individual damage instances (say at nth damage level) the GP input space formed 

using six variables such as n — 1th damage level damage state ( an_i) , nth damage level 

X-axis maximum load ( {7J£ax) , X-axis minimum load ( U™n), Y-axis maximum load ( 

U^3*) , Y-axis minimum load (U™n) and fatigue cycle interval ( dNn). The nth damage 

level damage states, an, is considered as target. Also, as mentioned before, the damage 

states (here the crack lengths) in both input and output spaces are normalized against 

its maximum value i.e. approximately 72.0mm. The load measurements in input space 

are normalized against the yield load (i.e. 7200 lbf or 32027.2 N). Although the test data 

(both high resolution image and load cell measurements) are available in an interval of 300 
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cycles, only at discrete instances training and test cases are selected. This is because it is 

highly cumbersome to visually estimate the crack length from acquired images. The use 

of automated SHM technique, which is discussed in the later part of this dissertation, can 

alleviate this problem associated with manual/visual way of damage quantification. Using 

the trained GP model the one-step ahead predictions are performed for individual input 

space (or input condition) of cruciform 7. Figure 4.5 shows the training crack growth data 

as well the test case prediction (mean prediction). From the figure it can be seen there is a 

good correlation between mean prediction and mean actual crack length. All the predictions 

are performed in scaled domain of interval 0-1. Once the predictions are performed the 

damage states are scaled backed to its original scale (in mm). Figure 4.5 also shows the 

2cr (95 %) confidence bound. It can be seen that all the mean predictions fall within the 

la confidence bound. It is to be noted that the confidence bound shown in Figure 4.5 has 

contributions from both modeling error as well as from scatter or noise hyperparameter 

^scatter (refer chapter 3). Figure 4.6 shows 2a confidence bound without considering the 

noise hyperparameter contribution. Comparison of Figure 4.5 and Figure 4.6 shows that the 

2a confidence bound due to only modeling error contribution is substantially less compared 

to 2a confidence bound with both modeling error and noise contribution. 

Case-II: The prediction is performed for cruciform specimen 11, which was fatigue tested 

under modified FALSTAFF loading. In this case, test data from cruciform specimen 8 was 

used to train the GP model. It is important to note specimen 8 was fatigued under random 

loading. Figures 4.7 and 4.8 show the corresponding prediction results. Figure 4.7 shows 

the training crack length data as well as the mean prediction and its associated 2a (95 

%) confidence bound (with both modeling error and noise hyperparameter contribution). 
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Fig. 4.5. Prediction under biaxial random loading with training data from random loading 
test (error bound includes the contribution from noise hyperparameter) 

80 

60 

S 
a 40 

C3 
+ 

20 

0 
0 

1 1 

2CT bound without scatter 
© |LL—prediction (Cr—7) 
* |LL—actual 
o Training data (Cr-8 ) 

o 

O " 

No. of cycles x l O 
4 
5 

Fig. 4.6. Prediction under biaxial random loading with training data from random loading 
test (error bound does not include the contribution from noise hyperparameter) 
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Comparing the mean prediction with actual mean crack length it can be seen that there 

is a good correlation between actual and prediction as it was observed in the case I. Also, 

the la (95 %) confidence bound without noise hyperparameter contribution can be seen in 

Figure 4.8. Comparing Figures 4.7 and 4.8 it can be seen that there is slightly narrower 

2a bound in the absence of noise compared to the case with noise contribution. However, 

compared to case I (for which both training and test loading cases are same), in this case the 

reduction in 2a bound by removing the noise contribution is not significant. This implies 

modeling error mostly contributed to the 2a confidence bound in case II. The comparatively 

larger modeling error contribution is due to a totally different test loading case compared 

to the training load case. This is closer to real-life situation, where one may not have 

the luxury of predicting a test case, for which a training data set that would be available. 

From Figure 4.8 it can be observed that though the 2a bound is wider compared to the 

previous random loading prediction case, it is reasonably narrow. It can be seen that if the 

test loading patterns have similar loading cycles (not necessarily in the same order), as in 

case of training load case, the GP model is capable of predicting the unknown pattern for 

the test case. In the present case each block of modified FALSTAFF (refer Figure 4) has 

only 75 different loading cycles (or with 75 different load ratios) compared to the random 

loading case with much larger number of different load ratios. The random loading patterns 

are generated for each fatigue cycle differently by using the MATLAB™ random number 

generator. For a good GP prediction it is always better if the training data set has more 

number of different load patterns compared to the test case load patterns. 
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Fig. 4.7. Prediction under biaxial modified FALSTAFF loading with training data from 
random loading test (error bound includes the contribution from noise hyperparameter) 
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Case-Ill: In this case the prediction is performed for cruciform specimen 8 (tested under 

random loading) with training data from cruciform specimen 11 (tested under modified 

FALSTAFF loading). This is opposite of the previous prediction case (case II). The predic

tion results are shown in Figures 4.9 and 4.10. Figure 4.9 shows the training crack length 

data as well as the mean prediction and its associated 2<r (95 %) confidence bound (with 

noise hyperparameter contribution). Comparing the mean prediction with actual mean 

crack length it can be seen that there is not much correlation between actual and predic

tion as it was observed in the previous two cases. In addition, comparing prediction results 

for random loading case (refer Figure 4.5) and modified FALSTAFF case (refer Figure 4.7), 

the present prediction results (refer Figure 4.9) shows a much wider 2cr (95 %) confidence 

bound. The 2a (95 %) confidence bound without noise hyperparameter contribution is 

shown in Figure 4.9. Comparing Figures 4.9 and 4.10 it can be seen that there is slightly 

narrower 2cr bound in case of without noise than with noise. This implies that the modeling 

error contribution in the 2<r confidences bound, is more significant. The cause for large 

modeling error is due to the use of modified FALSTAFF input-output data as training set 

data. As explained before, the modified FALSTAFF input-output data has less information 

compared to the random loading input-output data set. This leads to the inferior prediction 

of random loading damage states. 
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Fig. 4.9. Prediction under biaxial random loading with training data from modified 
FALSTAFF loading test (error bound includes the contribution from noise hyperparameter) 
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4.4. Conclusion 

The present chapter discusses the Bayesian Gaussian process approach to predict damage in 

complex structure under complex biaxial state of random and flight profile fatigue loading. 

The multivariate GP model first trained with input-output data set obtained from previous 

fatigue test. For a typical output at nth damage level (a„) the corresponding GP input 

space x n formed using six variables such as n — 1th level damage state (an_i), nth level X-

axis maximum load ( L^ a x) , X-axis minimum load ( U™n), Y-axis maximum load ( Ug^**) 

, Y-axis minimum load (U™n) and fatigue cycle interval ( dNn). Once the GP model is 

trained, it is used to predict the unknown damage state or crack length (a. ) for a known 

input condition (x, ). Different training and prediction cases are studied to evaluate the 

performance of the proposed GP model. Following are the important observations from the 

present study. 

1. Prediction under a particular load can be performed very accurately by training the 

GP model with the fatigue test data obtained from a different specimen but tested 

under same loading condition. 

2. Prediction under a particular loading pattern can be performed fairly accurate if the 

GP model is trained with the fatigue test data set that has majority of the test case 

load patterns, not necessarily with the same order as the test case. A typical example 

is the prediction under a flight profile load with a training data set using random load 

data. 

3. Poor prediction is observed if the GP model trained with the fatigue test data set 

that has not seen majority of the test case load patterns. A typical example is the 
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prediction under random load using a GP model that is trained with data obtained 

from modified FALSTAFF fatigue test. 
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CHAPTER 5 

Online Damage State Estimation Using Active Sensing and Supervised Gaussian Process 

Approach 

5.1. Introduction 

In the chapter 3 and 4 it was discussed how to predict the future damage state of 

a structure. However, the correct prediction of future damage states depends on current 

damage conditions of the structure. Manual inspection of damage condition is generally 

uneconomical and also undermines the mission capability due to long overhauling time re

quirement. The current research on structural health monitoring (SHM) [106, 107] can lead 

to a paradigm shift in condition based maintenance (CBM) and residual useful life estima

tion (RULE) procedures. The use of distributed sensors, networks and novel information 

management techniques can lead to greater efficiency in monitoring and damage state esti

mation. Capability for prognostic and preventative maintenance through SHM will reduce 

the downtime of these critical structures, resulting in substantial savings and greater flex

ibility on maintaining and using the current fleet and designing the next generation air 

transportation system. The present chapter discusses a Gaussian process [82, 84, 98] based 

supervised approach for estimating the damage condition at any given damage level. This 

is an online model, which maps the features of a piezoelectric sensor signal to the physical 

damage state, in this case the crack length or the crack growth rate. 

5.2. Theoretical Approach 

5.2.1. Gaussian process (GP) online damage state estimation 

A Gaussian process [82, 84, 98] approach that includes Bayesian uncertainty into the 

model is used for the online damage state estimation. It is assumed that the crack length or 

the damage condition at a given damage level is a random variable and follows a Gaussian 
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probability distribution. The GP is a combination of such Gaussian distributions over the 

entire fatigue life. The GP model projects the input space to an output space by inferring 

the underlying probabilistic nonlinear function relating the input to the output. Once the 

GP is trained with a known input-output data set, it can predict the unknown output crack 

length or its growth rate for a known input. For the online state estimation, the model input 

space is trained using the features obtained from sensor signals, whereas the output space 

is trained with the corresponding crack lengths as parameters representative of the damage 

state. The training data are generated using different test specimens. It is noted that to 

estimate the nth damage level output, i.e., the crack length or its rate, the corresponding 

input for the online GP model are the nth damage level sensor signal features. To estimate 

the nth damage level crack length (an), the online GP model posterior distribution for an 

can be given as 

/ ( a n | D , K„( X i , X j ) , 9 ) = i e x p ( J - ^ - ^ l j (5.1) 

It is noted that in all mathematical expressions used in this thesis, including the above 

equation, the bold lettering symbolizes either a vector or a matrix. Also in Eq. (5.1), Z is 

an appropriate normalizing constant and D = {XJ, ai}™^ is the training data, with x, and 

aj are the ith feature vector and corresponding damage state, respectively. The mean fian 

and the variance a\ of the new distribution are, respectively, defined as 

/ia n = k ^ V n - l i < = « - l ^ K - i i k n (5.2) 

It is noted that / i a n gives the mean of the estimated crack length, whereas the variance 

o\ gives the associated error in estimation. The error is attributed to the training of the GP 
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online model with signal features found from different specimens, which do not necessarily 

have the same microstructure as the specimen under consideration. In Eq. (5.2) an_i is 

the ( l x n - 1 ) training output vector which, in this case, consists of the crack length. Also 

K, kn , and K n _i are the partitioned components of nth instances of the kernel matrix K n 

and they can be described as 

K = fc(Xn,Xn) ; K = fc(Xn, 'X.i)i—i!2,-- ,n—1 i **• = ^(Xi, Xjjjj=l]2,--- ,n—1 \p-^) 

In Eq. (5.3), k is the assumed kernel function, which transfers the nonlinear function 

parameter to a linear high dimensional space based on some observations. It is noted that 

in high dimensional space, the original nonlinear data are linearly separable. There are 

many possible choices of prior kernel functions [82, 84, 97, 98]. Prom a modeling point of 

view, the objective is to specify a prior kernel that contains our assumptions about the 

structure of the process being modeled. The kernel function used for the present problem 

is a combination of different kernel functions and is expressed as 

k = kMLP + kRBF + kcONST + k^oiSE (5-4) 

where, the multi-layer perceptron (MLP) kernel is expressed as 

kMLp(xi,Xj) = QiSin-'i ° 2 X i X j ' ) (5.5) 

v/(62xfx i + l)y/(l + G2xJXj) 

In Eq. (5.4), the anisotropic radial basis function (RBF) kernel is 

W(x i ) X j , e ) = e3exP f - ^ E ( X M e ^ ) 2 ) (5-6) 

The constant function (CONST) kernel is 

kcoNsri®) = ©3+d+i (5-7) 
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and the noise function (NOISE) kernel is 

kNOISE(&) = Sij@3+(i+2 (5.8) 

In Eq. (5.6 to 5.8) d is the dimension of the sensor signal feature space, i.e., the type of 

sensor signal features and 5ij is the Kronecker delta. As stated earlier, for the online state 

estimation model the input space x^ in Eq. (5.3) uses sensor signal features, whereas the 

output space a,j corresponds to the damage state at the j t h damage level. For the present 

online estimation, the features could be normalized resonant frequencies or normalized 

sensor signal variances found from different sensors. Details about feature vector extraction 

are provided in later subsections. The hyperparameters @i=it2...d+5 in Eq. (5.5) to Eq.(5.8) 

are adjusted to minimize the negative log likelihood L, given by 

1 1 T> 1 71 

L = - - l o g d e t K n - - a £ K - 1 a n - - l o g 2 n (5.9) 

These hyperparameters are initialized to reasonable values and then the conjugate gradient 

method is used to search for their optimal values. Initially the kernel function in Eq. 

(5.4) is evaluated using the assumed initial hyperparameters and iterated further to find 

the optimal values for which the negative log likelihood L in Eq. (5.9) is minimized. In 

addition to estimating the direct crack length, the crack growth rate can also be estimated 

by modifying Eq. (5.1) as follows 

f(£jD, K„(x„x , ) , 6 , - - e x p M b j ^ H ( " 0 ) 
\ dnn / 

Where, fida and a2^ are the estimated mean and variance, respectively of the crack 
dnn dnn 

growth rate at the nth damage level. Equations (5.1 to 5.10) describe the online GP model, 

and can be used for estimating the damage state at the nth damage level. 
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5.2.2. Sensor signal denoising using principal component analysis (PCA) 

Principal component analysis [108, 109] is an orthogonal basis transformation that can 

be used for sensor signal denoising and dimension reduction. PCA is a process that identifies 

the direction of the principal components where the variance of changes in dynamics is 

maximum. Assuming M different observations obtained from each sensor at a typical 

damage instance (say at the nth damage level) and each observation with M samples, the 

input signal space corresponding to that particular sensor and damage level, is a M x M 

matrix. It is noted that each sensor observation is a 1 x M vector named XJM- Then the 

centered M x M covariance matrix of the data set < yp 6 RM\p = 1,2, • • • M > can be found 

as 

CM = ((yq~(yP))(yq-(yP))T) ( s .n ) 

The covariance matrix is diagonalized to obtain the principal components and the diago-

nalization can be performed by solving the following eigenvalue problem 

Xv = CMv (5.12) 

The size of an eigenvalue A corresponding to an eigenvector v of covariance matrix C$ 

equals the amount of variance in the direction of v. It is assumed that all the M sensor 

observations taken at a typical damage level can be converted to m equivalent observations, 

which contain the necessary dynamics of the structure at that damage level. The original 

(after using an appropriate filter) observation space Yj^xM can be reduced to a YmxM 

equivalent observation space by using the following transformation 

YmxM = ^MXfnXMxM (5.13) 
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Where, $ ^ is the eigenvector matrix containing fh eigenvectors found from the eigen

value analysis described in Eq. (5.13). The transformed observation space YfhxM consists 

of m 1 x M denoised sensor signals, which can be used further for feature extraction. 

5.2.3. Normalized damage feature extraction 

Once sensor signal denoising has been performed using PCA, the denoised sensor signal 

has minimal noise content, and has only information that is pertinent to the dynamics of 

the physical system. From the denoised signal, two types of features are extracted: one is 

based on resonant frequency of the denoised signal, and the other is based on the variance 

of the denoised signal. The scaled sensor signal features, which were fed to the GP input 

space of online state estimation model can be found using 

fh j . j . 

( j - ) (5.14) 
fc=l J k'° 

where fe corresponds either to the resonant frequency or the variance of the denoised sensor 

signal; d is the dimension of the input space and is equal to the total number of features; fh 

is the dimension of the reduced denoised signal space given in Eq.(5.13). Also the subscript 

' j ' in fekj and '0' in /e^o respectively indicate the j t h and 0th (or healthy state) damage 

level. The subscript 'k' corresponds to individual signals in the reduced denoised signal 

space YmxM given in Eq. (5.13). 

5.3. Numerical Results 

5.3.1. Fatigue test and data acquisition 

The online state estimation algorithm is validated with Al-2024 T3 lug joint speci

mens under constant fatigue loading of 50N-2750N. A typical test setup is shown in Figure 

5.1. The test setup includes a TestResource desktop fatigue frame, a 48 channel National 
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Instrument PXI data acquisition system and a SONY high resolution CCD camera (with 

maximum resolution of 1376 x 1024) for the visual crack length measurement. Figure 5.1b 

also shows the magnified image of Al-2024 T3 lug joint specimen. As shown in Figure 5.1b, 

each lug-joint was instrumented with four piezoelectric sensors, S1-S4 and one piezoelectric 

actuator, Al. The sensor network was divided into two zones: Zone-1 consisting of sensors 

SI and S2, and Zone-2 consisting of sensors S3 and S4. Three different lug joints labeled 

Sample-1 to 3 were fatigue tested. The fatigue frame was stopped at different instances and 

using the multi channel data acquisition system, the piezoelectric signals corresponding to 

a narrow band actuator input (Figure 5.2) were acquired at those stopping instances. The 

input signal had a central frequency of 230 kHz and sampled at 1 MHz. However, to avoid 

any information loss due to host structure coupling, the output sensor signals were acquired 

with a sampling frequency of 2MHz. Also rather than acquiring one observation per sensor 

at a typical stopping instance, 100 different observations were acquired for the statistical 

denoising of the sensor signals. To acquire individual sensor observations, each time the 

piezoelectric actuator was excited with the mentioned input signal, at a time interval of 

5 seconds. It is noted that each observation contains 1000 samples. As the fatigue frame 

was stopped, high resolution pictures of the lug joint were taken to find the corresponding 

crack length. The observed crack lengths for all the three samples are depicted in Figure 

(5.3). These crack lengths are used either for the GP algorithm training or validation. 
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Fig. 5.3. Measured crack length using high resolution camera 

5.3.2. Sensor signal normalization 

As mentioned above, at each stopping instance, 100 sensor observations were acquired 

per sensor, against the stated input actuation. At the start of each acquisition, it is sup

posed that the data acquisition system would record ideally zero or nearly zero (if noise 

is considered) value. However, it is observed from Figure 5.4, that the starting value of 

individual observations do not have a zero value or approximately zero value, rather have 

a higher value. Also, it is observed from Figure 5.5 that the mean of each observation is 

not zero, rather it has some higher numbered value. This is possibly because of the static 

charge developed due to the static mechanical loading and any unknown ambient noise. 

Also, from Figure 5.4 and Figure 5.5, it is observed that as the number of observations in

creases, the mean (or starting point) of individual observations drifts away from its starting 

observation value. This is possibly due to the above mentioned causes, in addition to the 
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Fig. 5.4. Raw sensor signal (from sensor 4 at the healthy state of specimen 2) acquired 
for individual observation 

possible static charge build up in sensors due to the repeated actuation in short intervals 

(5 seconds). The state estimation model based on this unregulated observations can lead 

to faulty estimations. To avoid this, before performing any other signal processing, the in

dividual sensor observations are normalized with sample mean equal to zero. Typical mean 

transformed sensor observations for the observations mentioned in Figure 5.4 and Figure 

5.5 are depicted in Figures 5.6 to 5.7. 
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Fig. 5.7. Magnified version of Figure (5.6) 

5.3.3. Sensor signal filtering and windowing 

After each sensor observations are normalized using the mean transformation men

tioned above, the observations are filtered from environmental noise using a band pass 

filter. The band pass filter has a cutoff frequency of 230±100 kHz. Where, 230 kHz is the 

central frequency of narrow band actuation. The selection of 100 kHz upper and lower limit 

for the band pass filter is based on the assumption that the maximum frequency variation 

of the observed signal will not cross these limits over the entire fatigue loading envelope. 

This also ensures that low frequency noise due to the actuator of the fatigue frame and 

high frequency noise due to other environmental factors are not modeled in the feature 

extraction process. Figure 5.8 and Figure 5.10, respectively, show the time response and 

frequency response comparison of unfiltered and filtered observations (from sensor 4) at 

any typical fatigue instance (for the present figure at the 0th damage level or at the healthy 
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state). The magnified version of the Figure 5.8 is also shown in Figure 5.9. Although it 

is not clear from the time response, the magnified frequency response (Figure 5.10) clearly 

shows that high frequency components (frequency more than 400 kHz) were present in the 

sensor signal. The high frequency signal may be due to the interaction of narrowband 

actuation waves with piezoelectric bonding layers, or due to other physical/environmental 

unknown causes. 

Once the low and high frequency signals (here the noise) are filtered out, it is neces

sary to select a proper window of samples, that does not consist of reflected signals from 

the geometric boundary of the specimen. For the discussed geometry, it is assumed that 

the direct wave from the actuator will always reach first compared to the reflected wave 

from the boundary. For this reason a window of sample width 80-110 is selected from the 

full signal of sample no. of 1-1000. The time and frequency response of the full signal 

(after band pass filter) is shown in Figure 5.11. From the frequency response it is seen 

that there are multiple peaks around the central frequency. These frequency peaks are 

due to the reflected waves from the boundary. The purpose of signal windowing is not to 

consider the reflected signal that contributes to those side lobed frequency peaks around 

the central frequency. The reasons for considering the lower bound of sample number 80 

are the assumptions that the traveling waves from the actuator did not reach the sensor, 

before the 80"1 sample (i.e., before 40 micro seconds) reached. This time lag is due to the 

combination of time lag caused by data acquisition itself and due to the time required by 

the actuation wave to travel within the structure. The higher bound of sample no. 110 is 

due to the assumption that after this sample the reflected wave starts reaching the sensors. 

The time and frequency response of the windowed signal is shown in Figure 5.12. From the 
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No. of samples (with 2MS/Sec . sampling frequency) 

Fig. 5.8. Time response comparison of a typical unfiltered and filtered observation (from 
sensor 4) at the healthy state of specimen 2 

frequency response, it is seen that the windowed signal has only one dominant frequency, 

which is expected when the sample is healthy and no frequency modulation occurs due to 

the boundary reflections. However, it is noted that the reflected signal (Figure 5.11) after 

sample no. 110 has more strength than the direct signal (before sample no. 110). The 

reflected signal may have more signals to noise ratio and might help in improving online 

state prediction accuracy, but may indicate the presence of a crack, even if there is no 

crack. This type of false detection might happen in the presence of multiple cracks in a 

single sample. 
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Fig. 5.10. Frequency response comparison of unfiltered and filtered observations (from 
sensor 4) at the healthy state of specimen 2 
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Fig. 5.11. Time and frequency response of the band pass filtered signal. The raw signal 
was collected from sensor 4 at the healthy state of specimen 2 

5.3.4. Sensor signal denoising and dimension reduction 

Even after sensor signal normalization and subsequent band pass filtering, the win

dowed signal mentioned above not necessarily consists only of the information pertaining 

to the dynamics of the physical system. There is still environmental noise present in the 

windowed signal. The frequencies of the noise will be in the unfiltered frequency band of 

130 kHz-330 kHz. However, it is not possible to directly filter out the noise in this fre

quency band, as it was done before. Direct use of a filter may remove the signal features 

that are related to the damage features of the structure. Principal component analysis 

(PCA) as described before is used to remove the remaining environmental noise. For this 

purpose, at each damage level, (where the fatigue frame was stopped to collect the data) 

100 windowed observations from each sensor are considered. It is assumed that using PCA, 
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Fig. 5.12. Time and frequency response of the windowed signal (from the band pass 
filtered signal as shown in Figure 5.11). The single peak in frequency response shows that 
there is no boundary reflection 

100 observations can be transformed to an equivalent single observation, which has the 

necessary dynamics change information. Figure 5.13 and Figure 5.14, respectively, show 

the covariance value of 100 observations before and after denoising. The highly noisy co-

variance plot of the original windowed signal confirms the presence of noise, which is not 

related to changes in the dynamics of the physical system. However, the covariance plot 

after denoising shows few clear peaks indicating that the new denoised signals set have only 

a few signals that contain the necessary dynamic change information. The number of de-

noised signals, which can be considered further, for feature extraction, can be selected based 

on the eigenvalue plot shown in Figure 5.15. Eigenvalues are found using the eigenvalue 

analysis of the original covariance matrix as described in Eq. (5.12). The eigenvalue plot 

clearly shows that the first eigenvalue is widely separated from the rest and the denoised 
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Fig. 5.13. Covariance of the windowed signal before denoising. The noisy plot shows the 
windowed observations has noise content, which are highly correlated 

signal corresponding to the lsf eigenvalue can be assumed to contain the highest dynamics 

change information. Hence, with the total number of signal samples considered (M = 30 

after windowing), and the total number of eigenvectors considered (m = 1), the denoised 

observation space Y^xM described in Eq. (5.13) reduces to a 1 x 30 denoised signal vector. 

Figure 5.16 and Figure 5.17, respectively, show the time and frequency response of a few 

denoised signals according to the decreasing order of sorted eigenvalue (signal variance). 

It is clearly seen that the signal corresponding to dimension 1 has the highest signal value 

and energy level, compared to the rest of the denoised signals. 
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first eigenvalue has the highest dynamics change information 
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Fig. 5.16. Various denoised signals corresponding to sorted eigenvalues and their corre
sponding eigenvectors 

5.3.5. Sensor signal feature extraction 

Using the denoised signal mentioned in the previous section, the damage pertaining 

features are extracted using Eq. (5.14). With the dimension of the denoised signal space 

equal to 1 x 30, the value of m in Eq. (5.13) and Eq. (5.14) is 1. The normalized features 

as described in Eq. (5.14) are found with respect to the healthy state of the specimen, and 

are found at each damage level, where the sensor signals were available. Figure 5.18 and 

Figure 5.19, respectively, show the features based on changes in resonant frequency and 

changes in variance of the denoised signal at different fatigue instances. From the figure it 

is seen that there is a good trend in signal features for both specimen 2 and specimen 3. 

These features will be used further, to form the GP input space for online state estimation. 
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5.17. Frequency response of the time response shown in Figure 5.16 
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5.3.6. Damage zone localization 

In a real life structure there could be multiple cracks. However, not all cracks are 

critical from the structural integrity point of view. For example, for the case of the present 

lug joint in specimen 3 there are two cracks: a stagnant bottom shoulder crack and a top 

shoulder crack that led to final failure. The real-time prognosis algorithm should have the 

ability to identify the damage propagating zone that leads to final failure. For the present 

symmetric lug-joint, either the bottom or top shoulder crack can lead to final failure. To 

identify the most critical damage zone, which consists of a critical propagating crack, the 

entire lug-joint is divided into two zones: zone-1, comprising the bottom half, and zone-2 

comprising the top half. Zone-1 consists of sensor 1 and sensor 2, whereas zone-2 consists of 

sensor 3 and sensor 4. To identify the critical zone with most damage a metric is selected, 

which is equal to the mean of the resonant frequency based features found for the individual 
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sensors located in that zone. The metric is calculated for each zone at different fatigue 

instances, for which sensor signals were available. At a given fatigue instance, the stated 

metric can be compared for individual zones, and accordingly the prognosis algorithm has 

to be switched to a particular zone that has the highest metric value. Figure 5.20 and 

Figure 5.21, respectively, show the comparison of the damage zone identification metric 

between zone-1 and zone-2 for specimen 2 and specimen 3. For specimen 2, it is clearly 

seen that the damage zone identification metric has a lower value for zone-1 compared to 

zone-2. This can also be confirmed from the visually observed crack growth as shown in 

Figure 5.3, that there was no bottom shoulder crack. Similarly, in the case of specimen 

3, it is seen that after 157 kcycles, the zone-1 identification metric becomes approximately 

constant and has consistently lower value compared to zone-2 metric. The above implies 

that the damage in zone-2 is growing, whereas damage in zone-1 is stagnant. This can also 

be seen in the observed crack lengths shown in Figure 5.3. 

5.3.7. Gaussian Process input-output space 

Once the feature extraction is performed for the online damage state estimation the 

GP input space is made using sensor signal features, discussed in the earlier section. The 

input vector Xjt j=o,i,- ,n,n+i is a d x 1 vector, where d is the dimension of the input space, 

comprising of different types of features found from different sensors placed in a particular 

zone of interest. For example, considering both the resonant frequency based features and 

signal variance based features and considering features from both sensor 3 and sensor 4, 

(ref. Figure 5.1b) the dimension d will be equal to 4. On the other hand, the output 

space at any given damage level comprises either the crack length or the crack growth rate, 
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but unlike the input space parameters (i.e., Xj), at j = 0,1, • • • , n — 1, nth damage levels, 

the output space parameter is a scalar. Before using the GP algorithm for online state 

estimation, the algorithm is trained with the data available from at least one sample over 

the entire fatigue loading envelope. This process helps the GP to learn the dynamics of 

crack propagation over the entire fatigue cycles range. For the present case, data from 

specimen 3 are used for training the online state estimation algorithm. As seen from Figure 

5.3, the fatigue frame was stopped respectively 10, 10 and 7 times for specimen 1, specimen 

2 and specimen 3. However, for the training of the online model, data from only specimen 

3 are considered, because the sensor data from specimen 1 was found corrupted, due to the 

use of a faulty signal amplifier. The online state estimation model is validated against data 

found from specimen 2. It is noted that the higher the number of training data, the better 

is the learning of the GP algorithm and the better is the state estimation accuracy. 

5.3.8. Information fusion and online state estimation 

Information fusion is the process of combining information from multiple 

sources/sensors to enhance the fidelity of the overall prognostic system. In the present 

work information fusion is performed for the GP online state estimation model. As men

tioned in the previous section, the GP input space is made of four different types of features: 

type-1 and type-2 are, respectively, the resonant frequency and signal variance based fea

tures found using the signals from sensor S3, and type-3 and type-4 are, respectively, the 

resonant frequency and signal variance based features found using the signals from sen

sor S4. These features are used to model the GP multivariate input space. The above 

mentioned input information is used in combination to estimate the GP hyperparameters. 

The hyperparameters are found by maximizing the negative log-likelihood function given 
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in Eq. (5.9). These hyperparameters for various combinations of input information have 

been estimated for further use in online state estimation of crack length or crack growth 

rate. Figure 5.22 shows a typical example of the convergence of the negative log-likelihood 

function optimization, while considering all four type of features for the GP input space. 

Based on the extracted signal features and optimized hyperparameters discussed above, 

the GP algorithm is used to estimate the unknown damage state for given input space 

information. The input space for both the training sample and the test sample are fed with 

the above mentioned four types of signal features. However, it is noted that unlike the GP 

training input space, the test input space is fed with features, as they become available, 

in real time. The test output at a given damage level has to be estimated using the d x 1 

feature vector extracted at that damage level. The comparison between estimated damage 

state (crack length) and the experiment value is depicted in Figure 5.23. From the figure 

it is found that, there is a good correlation between experiment and estimation, when the 

crack length is larger than 6 mm. The discrepancy between estimated and experiment 

increases as the crack length becomes smaller. This may be because the signal features are 

not sensitive to smaller cracks. This problem can be alleviated by using broadband and 

higher frequency input signals, which will be discussed in the next chapter. Also Table 5.1 

shows the Mean Square Error (MSE) estimate between the estimated crack length and true 

crack length for various combination of input space information. It is found that the mean 

square error has its least value when all four types features are considered in the GP input 

space. The GP online estimation model (ref. Eq. 5.10) is also used to estimate the crack 

growth rate. The comparison between estimated crack growth rate and true crack growth 

rate is shown in Figure 5.24. From the figure it is seen that, there is a good correlation 
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Fig. 5.22. Negative log-likelihood function value with respect to different Conjugate 
gradient iteration number 

between estimated crack growth rate and the experimental value. In addition, Table 5.2 

shows the MSE between estimated crack growth rate and true crack growth rate. From the 

table it is also found that MSE has its lowest value when all four signal features are used 

in the GP input space. 
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Fig. 5.23. Comparison of estimated crack length and true crack length using both resonant 
frequency (type-1) and signal variance (type-2) of signals from both sensor 3 and sensor 4 

Fe. type (—>) 
Sen. No. (|) 

Resonant 
frequency 
based feature 
(type-1) 

Signal variance 
based feature 
(type-2) 

Both resonant 
frequency and 
signal variance 
based feature 

S3 
S4 
both 

23.645 

4.9254 

2.8621 

5.0114 

6.9353 

3.2096 

4.8541 

5.3749 

2.1303 

TABLE 5.1 
M S E BETWEEN ESTIMATED CRACK LENGTH AND TRUE CRACK LENGTH FOR VARIOUS 

COMBINATION INPUT SPACE INFORMATION 



www.manaraa.com

101 

x 10 

>-> 

• i 
CD 

to 
fc-i 

O 

o 
CO 
(—1 

O 

160 162 164 166 168 170 
No. of fatigue cycles (kcycles) 

174 

Fig. 5.24. Comparison of estimated crack growth rate and true crack growth rate using 
both resonant frequency (type-1) and signal variance (type-2) of signals from both sensor 
3 and sensor 4 

Fe. type (—>) Resonant Signal variance Both resonant 
Sen. No. (j.) frequency based feature frequency and 

based feature (type-2) signal variance 
(type-1) based feature 

S3 
S4 
both 

5.82e-007 
3.39e-007 
3.30e-007 

4.06e-007 
1.786-006 
3.43e-007 

3.27e-007 
7.31e-007 
3.06e-007 

TABLE 5.2 
M S E BETWEEN ESTIMATED CRACK GROWTH RATE AND TRUE CRACK GROWTH RATE 

FOR VARIOUS COMBINATIONS OF INPUT SPACE INFORMATION 
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5.4. Conclusion 

A GP supervised model is proposed to estimate the online damage states. The online 

damage states are estimated using real-time sensor measurements and a trained GP model. 

The approach is demonstrated on an Al-2024 Lug-joint subjected to constant cycle fatigue 

loading. The online damage state estimation shows that there is a good correlation between 

experiment and estimation when the crack length is larger than 6 mm. The estimation error 

for crack lengths smaller than 6 mm can be reduced by using higher frequency broadband 

active sensing, which will be discussed in the next chapter. 
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CHAPTER 6 

Online Damage State Estimation Using Active Sensing and Unsupervised System 

Identification Approach 

6.1. Introduction 

In chapter 5 the supervised Gaussian process based online damage state estimation 

approach is discussed. However, most of the supervised pattern recognition algorithms like 

Gaussian process (GP) require large training data to extrapolate meaningful information 

for an unknown damage condition. In addition, the ultrasonic input based active sens

ing approach is highly sensitive to slight changes in boundary condition. In the earlier 

discussed supervised GP approach the online estimation model was based on a trained 

Gaussian process, which was trained using data from a different specimen. It is to be noted 

that, the training and test specimens, were tested under similar boundary conditions. Also 

the training and test specimen followed similar crack propagation path. However, it is not 

always possible to maintain the exact boundary condition and crack propagation path for 

both training and test structure. If there is not sufficient similarity between training and 

test condition, the supervised technique might give erroneous results. To circumvent the 

problem the use of unsupervised system identification technique can be explored. How

ever, many of the available approaches on system identification [110], [111] are generally 

confined to low frequency based applications such as process and aircraft flight control 

identification. The research on low frequency structural damage identification, such as 

vibration-based damage identification has limitations [112] because of the larger power and 

actuator requirements to excite the low frequency, high power global structural modes. 

However, for local damage identification, smaller piezoelectric based actuators with low 

power requirements can be used to generate the required deterministic input signals for 
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effective use of system identification tools. The use of fairly matured system identification 

techniques can be extended for high frequency Lamb wave input signals in the range of 

kHz to MHz. For example, the high frequency response function [113] can be estimated 

at a particular damage condition and can be compared with the frequency response func

tion of the other damage condition to evaluate the relative change in the structural health. 

However, the narrowband Lamb waves widely used in SHM have limited capability for per

sistence of excitation except around the central frequency of the chosen input signal. This 

lack of persistence excitation in a broader band of frequency limits the damage estimation 

capability of narrowband based SHM techniques. Input signals such as multisine [114] sig

nal can be used for persistence excitation in a broader frequency band of interest. Under 

experimental conditions where noise is present, multiple cycles of the periodic input can be 

introduced until the variance in the model estimate is reduced to acceptable levels. In the 

present research, a broadband chirp [115] input is used to estimate the time series damage 

states. The chirp signal used is a type of multisine signal. The individual harmonics are not 

optimized, but linearly varied harmonics are selected in the required broadband frequency 

domain for simplicity. In addition, this chapter presents the use of two nonparametric sys

tem identification approaches such as frequency-domain based empirical transfer function 

estimation approach and time-domain based correlation analysis approach to estimate time 

series damage states. The real-time state identification algorithm is validated on an Al-2024 

cruciform specimen undergoing biaxial cyclic loading. 

6.2. Theoretical Approach 

Real-time damage state estimation is an integral part of SHM and prognosis systems. 

Here, the condition of the structure has to be assessed at real time using sensor signals 
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acquired either continuously or discretely. As mentioned earlier, nonparametric system 

identification approaches based on ultrasonic deterministic input signals are explored to 

estimate the current state of a structure. In the present chapter the effectiveness of both 

narrow and broadband input signals are studied. It is noted that for low frequency iden

tification applications, where the additive noise is independent of the deterministic input 

signal, the noise can be removed easily using correlation analysis. However, in the case of 

high frequency state identification applications usually the additive noise in the acquired 

signals contains the input dependent noise in addition to the input independent noise. 

Without proper knowledge of a time dependent noise transfer function, it is difficult to 

remove the input dependant noise from the measured outputs. To avoid this problem, two 

sensors are placed close together. Since both sensors receive the same input dependent and 

independent noise, it can be removed by taking the difference between the sensors mea

surements. In addition to the noise removal, the dual sensor configuration will also help to 

improve the spatial resolution in damage state estimation. If two sensors are placed adja

cent to each other, ideally they would receive the same signal at a given damage condition. 

However, if there is a small change in damage, this will be reflected as large differential 

change in sensor signals received at the adjacent sensors. As the damage grows this differ

ential change grows with respect to the healthy or reference condition. This phenomenon 

of large differential signal change for small change in damage condition can be used for 

improving the spatial resolution in damage state estimation. The dual sensor configuration 

block diagram is shown in Fig.6.1. 
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Fig. 6.1. Input-output block diagram for dual sensor configuration 

In the figure, u is the deterministic narrow or broadband input signal, (Pi)n is the nth dam

age level transfer function associated with input u and output y\ from sensor 1. Similarly 

(P2)n is the nth damage level transfer function for sensor 2. It is noted that even though 

the two sensors are identical and placed nearby, the transfer function associated with sensor 

1 will be different from the transfer function associated with sensor 2. This difference is 

because each sensor will be receiving different reflected signals from a propagating crack 

or damage. However, the input dependant noise transfer function Qn is assumed to be the 

same for both sensors since it is usually due to electromagnetic interference and electromag

netic compatibility. In addition, the sensor might receive input independent noise, denoted 

as v. With the above information, the measurement equation for both sensor 1 and 2 can 
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be written as: 

2/1 = (Pl)n(jw)u + Qn{jw)u + V (6.1) 

2/2 = {Pl)n{jw)u + Qn{jw)u + V (6.2) 

6.2.1. Damage state estimation using empirical transfer function estimation (ETFE) ap

proach 

Subtracting Eq. (6.2) from Eq. (6.1), 

2/1 - 2/2 = ( ( t t ) n C H - {P2)n{jw))u (6.3) 

Eq. (6.3) can be equivalently written as, 

V = Pn{jw)u (6.4) 

where 2/ = 2/1 — 2/2 and Pn{jw) = {P\)n(jw) — (P-^niJw)- Using spectral analysis, the 

transfer function Pn(jw) can be expressed as 

where Suy(jw) and Suu(jw) are the cross-spectral density between u and y, and auto-

spectral density of u respectively. These densities can be expressed in terms of cross-

covariance coefficients Cuy(m) and auto-covariance coefficients Cuu{m) as 

L 

Suy(j^) = J2 Cuyoj{k)e-i"k (6.6) 
k=-L 

L 

Suu(jw) = Y, Cuuu;(k)e-jujk (6.7) 
k=-L 

where u>(k) is the lag window used for smoothening and L is the truncation parameter for 

the window. Substituting y\ — 2/2 for 2/ m Eq. (6.6) Eq. (6.5) can be rewritten as 

Pn{jw) = Suyi(jw)-S (jw) = {piUjw) _ {^Ujw) ( g g ) 
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where 

The frequency response function Pn(jw) represents the change in damage condition at 

nth damage level. It is a vector and to directly compare the different damage conditions 

using this function is difficult. An equivalent root mean square deviation (RMSD) based 

novel damage index an is proposed. The damage index is normalized against the healthy 

condition frequency response function and is expressed as 

n̂ — \ 
K;(W)-fl)H2 

(6.10) 

where Pn(ju) — (Pi)n(jui) — (P2)n(ju). Here, n = 0 represents the reference damage level. 

The nth level damage index an is the equivalent change in output (from piezoelectric sensors) 

time-series against a fixed input (from the piezoelectric actuator) time-series measured at 

the nth damage level. 

6.2.2. Damage state estimation using correlation analysis (CRA) approach 

The accuracy of the damage index estimated using the ETFE approach depends on 

how accurately the spectral densities Suy and Suu are estimated. The accurate estimation 

of the spectral densities depends on the accuracy of the Fourier transformation of the 

respective cross-covariance coefficients Cuy(m) and auto-covariance coefficients Cuu(m). 

To avoid errors in the frequency domain transformation, the time-domain cross-correlation 

and auto-correlation coefficients can be directly used to estimate the time-series damage 

indices an. For a deterministic, fixed input signal the auto-correlation coefficients Cuu(m) 

are fixed for all damage conditions. Ignoring the contribution from the auto-correlation 
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coefficients Cuu(m), the equivalent damage index can be evaluated as 

an = 
ZZZ%((Ruy)n(m) - (fl„y)o(m))2 

\ 22m=-M((Ruy)o(m)y 

where (RUy)n(fn) = RuyAm) ~ Ruy2(
m), Ruyiim) and Ruy2(m) are the mth lagged cross-

correlation coefficients corresponding to sensor 1 and sensor 2 respectively. The mth 

lagged cross-correlation coefficients Ruyi (m) are expressed in terms of the mth lagged cross-

covariance function Cuyi(m) as 

Ruyi{m)= . Cuyi^ (6.12) 
VCuu(m)y/Cyiyi(m) 

Where n = 0 represents the reference damage level. The damage index an is the represen

tation of the nth damage condition with respect to the reference (n = 0) or known damage 

condition. It is also important to mention that both the proposed damage index estimation 

approaches (ETFE and CRA) are valid for any complex structure and the validation of 

these approaches will be discussed in the following sections. 

6.3. Numerical Results 

To evaluate the performance of the damage index estimation at different damage con

ditions, both broadband and narrowband active signals are tested. To generate the output 

sensor signal against the broadband actuator input, a fatigue experiment is performed, 

whereas for generating the output sensor signal against the narrowband actuator input, a 

finite element simulation is performed. The finite element simulation is time consuming and 

the computational time and memory requirements increase significantly with an increase 

in the length of the input signal. In this work, finite element simulations are performed 

only for the narrowband input signal. The details of the fatigue experiment, finite element 



www.manaraa.com

110 

simulation, and corresponding numerical evaluation of proposed damage index estimation 

approach are given below. 

6.3.1. Fatigue experiment for broadband active sensing 

To test the real-time state estimation algorithm, a fatigue test was performed on an 

Al-2024 cruciform specimen under biaxial loads. As shown in Figure 6.2, the cruciform 

specimen was loaded using a MTS biaxial/torsion test frame. The specimen was subjected 

to a constant amplitude fatigue load with amplitude umax = 21.36 kN, load ratio R=0.1, and 

frequency of 10 Hz. For damage state estimation at different damage levels, piezoelectric 

actuators and sensors were used. The instrumented cruciform specimen with different 

sensor configurations can be seen in Figure 6.3. After each 1500 cycles, the test frame was 

programmed to stop for 75 seconds and during this period, piezoelectric sensor signals were 

collected for a deterministic (or fixed) input signal. Images of the propagating damage 

were also collected using a high resolution camera. The data and image collection started 

at approximately 10 kcycles. The image and sensor data were collected at 95 different 

damage levels. It should be noted that to accelerate the crack initiation process, a circular 

hole (refer Figure 6.3) was made at the center of the web area. An EDM notch (in the 

bottom right quadrant of web area) of length 1 mm was made at the edge of the circular 

hole to accelerate crack initiation (Figure 6.3). A through crack started from the EDM 

notch at approximately 19 kcycles (refer Figure 6.4) and grew towards the bottom edge 

of the web area. Once the crack reached the bottom edge of the web, a second crack 

initiated at the upper boundary (along the vertical axis) of the central hole. The second 

crack grew up to the top boundary of the web before final catastrophic failure occurred. 

The second crack growth was rapid and occurred only within 6 kcycles before final failure 
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occurred at 151 kcycles. Out of the total 95 damage levels, the crack tip was in focus (of 

the high resolution camera) only for the first 48 images. The crack length measurement 

corresponding to different damage levels (or fatigue cycles) and different sequence of events 

can be seen in Figure 6.4. In the case of active sensing, the input signal considered for 

this study was a broadband chirp signal with frequency varying from 100 kHz to 300 kHz 

and is shown in Figure 6.5a. The persistence of excitation in the chosen band can be 

seen from the spectral density plot shown in Figure 6.5b. A representative sensor signal 

from sensor 1 (Ref. SI in Figure 6.3) at the healthy condition is shown in Figure 6.5c, 

and the corresponding spectral density is shown in Figure 6.5d. From Figure 6.5d it can 

be seen that the output power spectral density, between 100 kHz to 300 kHz, is found 

to be persistently higher than -lOOdB/Hz. The persistence of excitation can also be seen 

from the spectrogram plots of the input and output signal shown in Figure 6.6a and 6.6b, 

respectively. This persistence of excitation of structural modes in the chosen frequency 

band is a good indicator for unbiased state estimation. It is noted that at each damage 

level, five sets of active signals were collected by exciting the piezoelectric actuator in five 

seconds intervals. These multiple sets of observations at a single damage level were collected 

to avoid any measurement loss due to false actuation and to quantify the error bound in the 

damage index estimation. The measured sensor signals at different damage levels are used 

to estimate the corresponding damage index. Details of the process are discussed below. 



www.manaraa.com

112 

Q o 9 a w i» 
a o 9 V i © © » 

a 9 * * w ® * 

9 0 S 

X2 
e » © 

; "fee* 
, . e e e 

L I 

1 
^mshmwri IIH3 

Fig. 6.2. Experimental setup with instrumented cruciform specimen. 
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Fig. 6.3. Magnified cruciform specimen with different sensor configurations. 
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Fig. 6.5. a) Broadband chirp input with frequency sweep from 100 kHz to 300 kHz b) 
Power spectral density of the input signal c) Signal from sensor 1 at a typical damage level, 
d) Power spectral density of the sensor signal in c). 
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Fig. 6.6. Spectrogram of input and output signal shown in Figure 6.5a and c. 

6.3.2. Finite element simulation for narrowband active sensing 

To evaluate the performance of the damage index estimation against the narrowband 

burst signal, finite element (FE) simulations are performed. Ten different damage cases were 

considered. The details of the different damage cases are given in Table 6.1. The finite 

element model for a typical case (case 10) can be seen in Figure 6.7a. The piezoelectric 

actuator and sensors are located at the same positions as the experimental setup (Figure 

6.3). A snapshot of the wave propagation simulation for damage case 10 can also be seen 

in Figure 6.7b. This wave propagation simulation study shows that due to the presence of 

a large crack in front of the actuator, sensors placed on the opposite side of the crack (e.g., 

sensor 3 and sensor 4 of sensor configuration 2) become blind to the traveling input waves. 

For all ten damage cases, the piezoelectric actuator is excited with a 230 kHz narrowband 

burst input as shown in Figure 6.8a. Figure 6.8b shows the power spectral density of the 

input signal. The sensor signal from sensor 1 and its power spectral density can be seen 
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Damage case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Crack size 
Healthy condition (with 1 mm notch) 

5 mm bottom crack 
10 mm bottom crack 
15 mm bottom crack 
20 mm bottom crack 
25 mm bottom crack 
30 mm bottom crack 
32 mm bottom crack 

17 mm top (total crack length of 49 mm) crack 
32 mm top (total crack length of 64 mm) 

TABLE 6.1 
DIFFERENT FE SIMULATED DAMAGE CASES 

in Figure 6.8c and Figure 6.8d, respectively. In addition, Figures 6.9a and 6.9b show the 

spectrograms of the actuator and sensor signals shown in Figure 6.8. The simulated sensor 

signals at different damage levels are used to estimate the damage index. 

6.3.3. Time-series damage state estimation 

Sensor signals generated using the fatigue experiment and FE simulation are used for 

estimating the time-series damage index. The details of the results are explained in the 

following subsections. 

6.3.3.1. Damage index estimation using finite element simulated narrowband active sensing 

Damage indices based on both the empirical transfer function estimation approach and 

the correlation analysis approach are evaluated. The narrowband sensor signals are collected 

for the different FE simulated damage conditions discussed earlier. Using empirical transfer 

function estimation, the respective results for sensor configurations 1 and 2 are shown in 

Figure 6.10 and Figure 6.11. From Figure 6.10 it can be seen that there is a good trend in 

the damage index only from damage level 6, which is equivalent to 25 mm of crack length. 



www.manaraa.com

116 

Sensor 

Fig. 6.7. a) Finite element simulation showing crack path during final catastrophic failure 
b) Snap shot of wave propagation with simulated crack path as shown in Figure a. 
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Fig. 6.8. a) Narrowband burst input with central frequency 230 kHz b) Power spectral 
density of the input signal c) Sensor signal from sensor 1 d) Power spectral density of the 
sensor signal in Figure c. 
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Frequency (Hz) 

Fig. 6.9. Spectrogram of input and output signal shown in Figure 6.8a and 6.8c. 

In case of sensor configuration 2 the damage index estimation is less accurate and there is no 

proper trend for the entire damage regime. Damage indices based on correlation analysis 

are evaluated for both sensor configurations 1 and 2 and are shown in Figure 6.12 and 

Figure 6.13. Compared to the damage indices estimated using empirical transfer function 

estimation, the correlation analysis based damage indices show a slightly better trend of 

cumulative damage growth. It is also seen that, similar to the empirical transfer function 

estimation approach, the correlation approach shows a better trend for sensor configuration 

1 compared to sensor configuration 2. The poor performance of sensor configuration 2 is 

due to the development of a shadow region that is formed by the propagating cracks in 

front of the actuator. This leads to a poor damage signature in measurements from sensor 

configuration 2. 

It is seen that the narrowband input based ETFE and CRA approaches show poor 



www.manaraa.com

118 

performance of damage index estimation during smaller damage growth regime (i.e., below 

damage level 6 equivalently to 25mm crack length). It must be noted that signals based on 

FE simulation are noise free. Although the present narrowband based FE simulation signals 

are noise free, the damage index estimation using these signals fails to provide a clear trend 

of damage index growth throughout the fatigue life. A potential reason for the lack of trend 

in the damage index estimation is the narrowband signals central frequency, which may 

not necessarily be optimal for the chosen actuator and sensor location. Moreover, other 

structural modes (other than the structural mode associated with the central frequency 

of the narrowband signal) associated with the local damage are not persistently excited. 

This leads to a weaker signature in sensor signals. The above mentioned limitations in 

narrowband based SHM points to a need for exploring the usefulness of broadband active 

sensing, which is discussed in the following section. 

6.3.3.2. Damage index estimation using experimental broadband active sensing 

Unlike the case of narrowband input, for broadband input it is not required to tune its 

central frequency with the resonant frequency of the interrogated structure. Also, the tuned 

central frequency for narrowband input does not necessarily remain optimal as damage 

progresses. The broadband input consists of multiple sinusoids with different frequencies 

spread over a larger envelope that may be affected by damage. The multiple structural 

modes are affected by the damage and it is expected that a broadband input will excite 

those individual structural modes. Hence a broadband input does not require any frequency 

tuning of the input signal with the resonant frequency of the structure. Using the broadband 

chirp signals, the damage indices are estimated using Eq. (6.10) of the ETFE approach and 
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Fig. 6.10. Estimated damage index using ETFE approach and narrowband input signal 
from sensor configuration 1. 
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Fig. 6.11. Estimated damage index using ETFE approach and narrowband input signal 
from sensor configuration 2. 
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Fig. 6.12. Estimated damage index using correlation analysis approach and narrowband 
input signal from sensor configuration 1. 
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Fig. 6.13. Estimated damage index using correlation analysis approach and narrowband 
input signal from sensor configuration 2. 
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Eq. (6.11) of the CRA approach. For both sensor configurations the time series damage 

indices are estimated using the ETFE approach and shown in Figure 6.14 and Figure 

6.15. For the CRA approach, the damage indices estimated using sensor configuration 

1 and 2 are shown in Figure 6.16 and Figure 6.18. For each set of sensor signals, five 

different damage indices are estimated. Figure 6.14 to Figure 6.18 show the mean damage 

index and associated la error bounds at different damage levels. For ETFE approach it is 

found that (Figure 6.14 and Figure 6.15) up to approximately 82 kcycles, there is a good 

correlation of cumulative damage growth between estimated damage index and available 

visual measurements (Figure 6.4) for both sensor configurations 1 and 2. However, after 

82 kcycles it can be seen that (Figure 6.15) the damage index time series estimated using 

sensor configuration 2 does not show an increasing trend. This is due to the creation of a 

blind zone that leads to weaker signals being received by the sensors in configuration 2. On 

the other hand, for the entire fatigue loading regime, configuration 1 shows an increasing 

trend of damage index time series, which is evident in Figure 6.14. The increasing trend for 

sensor configuration 1 better resembles the physical phenomenon associated with cumulative 

damage growth. 

In the case of the CRA based approach it is found that up to approximately 110 

kcycles there is a continuous increasing trend of damage index time-series for both sensor 

configurations 1 and 2 (Figure 6.16 and Figure 6.18). However, after 110 kcycles it can 

be seen that the damage index time-series estimated using sensor configuration 2 (Figure 

6.18) does not show continuous increasing trend. This is again due to the creation of a 

blind zone that leads to weaker signals being received by the sensors in configuration 2. 

On the other hand, for the entire fatigue loading regime, configuration 1 shows (Figure 
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6.16) an increasing trend of damage index time-series. This is more evident when Figure 

6.16 is magnified as seen in Figure 6.17. It must be noted that although both approaches 

use the same sensor signals, in both sensor configurations the CRA based approach shows 

better trend in damage index growth compared to the ETFE based approach. For example, 

for sensor configuration 2, the ETFE based approach shows the cumulative damage index 

growth trend up to 82 kycles (Figure 6.15), whereas for CRA approach the corresponding 

trend is up to 110 kcycles (Figure 6.18). The higher accuracy of the damage index estimated 

using CRA approach is due to the direct use of cross-covariance coefficients Cuy (m) and auto 

covariance coefficients Cuu{m) (Eq. 6.12) rather than performing Fourier transformation 

of those (Eq. 6.6 and Eq. 6.7), while evaluating the damage index using ETFE based 

approach. 

Figure 6.14 to Figure 6.18 also indicate that the rate of damage index growth is higher 

between 10 to 19 kcycles compared to that after 19 kcycles. This trend is observed for both 

sensor configurations 1 and 2 and with both damage index estimation approaches. The 

higher growth rate is possibly due to the creation of multiple surface cracks in front of the 

EDM notch (Figure 6.3). These surface cracks coalesce before forming a visible through 

crack at 19 kcycles. As seen from Figure 6.4 these surface cracks were not captured in 

the image either because the cracks were developed on the opposite side of the specimen 

(opposite to the camera) or due to lack of clarity in the captured image. For CRA based 

approach, similar trend in high damage index growth rate is also observed from 140.5 kcycles 

to 142 kcycles. From Figure 6.16 and 6.18 it can be seen that at 140.5 kcycles, when the 

top crack has not initiated (Figure 6.4 and 6.19a), the corresponding damage index was 

approximately 1.419 for sensor configuration 1 and 1.128 for sensor configuration 2. At 142 
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kcycles there is a sudden jump in damage index to 1.973 for sensor configuration 1 and to 

1.23 for sensor configuration 2. Prom the acquired image shown in Figure 6.19b it is seen 

that there was no through crack at the top edge of the central hole. The jump in damage 

index again is possibly due to the development of multiple surface cracks. The snap-shot 

of the surface cracks coalescing (before the onset of a through crack at the top edge of the 

central hole) can be clearly seen from Figure 6.19c. Due to the development of multiple 

surface cracks, the signals received at the sensors are highly distorted and a jump or high 

growth in damage index is observed. From 140.5 kcycles to 142 kcycles this trend of high 

damage index growth rate is not observed (Figure 6.14 and 6.15) for ETFE based approach. 

This is because the ETFE based approach is not sensitive, as CRA approach, to distinguish 

between large crack opening and the corresponding precursory surface crack around it. It 

is also seen that the 2a error bounds for correlation approach (Figure 6.16 and Figure 6.18) 

is significantly narrower compared to the ETFE based la error bounds (Figure 6.14 and 

Figure 6.15). The lower la error bounds in case of CRA approach compared to ETFE 

approach is due to the direct use of time response signals rather than Fourier transformed 

correlation coefficients used in ETFE approach. 



www.manaraa.com

2.5 

2h 

11 .5 

D 1 

0.5 h 

I I2g error bound 
Mean damage index using configuration 1 

60 80 100 
No. of fatigue cycles (kcycles) 

160 

Fig. 6.14. Time series damage index estimated using ETFE approach and sensor config
uration 1 

60 80 100 
No. of fatigue cycles (kcycles) 

Fig. 6.15. Time series damage index estimated using ETFE approach and sensor config
uration 2 



www.manaraa.com

2.51 

J U 

0.5 

I 12c error bound 
• Mean damage index using sensor configuration 1 

Stage-III damage growth regime 

Stage-II damage growth regime 

40 60 80 100 
No. of fatigue cycles (kcycles) 

Fig. 6.16. Time series damage index estimated using correlation analysis approach and 
sensor configuration 1 

I 12a error bound 

60 80 100 
No. of fatigue cycles (kcycles) 

140 

Fig. 6.17. Magnified (from 20 kycles to 140 kcycles) version of Figure 6.16 



www.manaraa.com

126 

2.5 

I 1-5 

0.5 

1 1 1 

-

/ 1 1 1 

1 I2g error bound 
• Mean damage Index using sensor configuration 2 

i i 

Possible 
blind period 

i 

20 40 60 80 100 
No. of fatigue cycles (kcycles) 

120 140 160 

Fig. 6.18. Time series damage index estimated using correlation analysis approach and 
sensor configuration 2 

Fig. 6.19. Visual image snapshots at a) 140.5 kcycles b) 142 kcycles c) 149.5 kcycles d) 
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The sensitivity of the damage index to noise is evaluated by estimating the index 

from 500 different sets of observations acquired at a particular damage level (in this case 

at the healthy condition). The 500 observation sets are collected at 2 second intervals 

by repeatedly exciting the actuator. The corresponding damage indices for ETFE based 

approach are plotted in Figure 6.20. It can be seen that the value of each damage index 

is restricted to 0.5 for all 500 sets of observations. This observation suggests that damage 

indices greater than 0.5 not only have the contribution from measurement noise but also 

have the contribution from the change in damage state. This sensitivity analysis also 

suggests that at a particular damage level, the maximum variation (due to electrical noise) of 

estimated damage index is limited to 0.5. The sensitivity information can also be correlated 

with the la error bound presented in Figure 6.14 and Figure 6.15, which shows that the 

maximum variation in damage index about its mean damage level does not exceed 0.5. 

Similar sensitivity analysis is also performed for the CRA approach. The corresponding 

damage indices for 500 different sets of observations are estimated and are presented in 

Figure 6.21. It can be seen that the damage index value in this case is much smaller than 

the one obtained for the ETFE based approach. The damage index is restricted to a value 

of 0.1, except for a few outliers, for all 500 sets of observations. The above sensitivity 

analysis can also be correlated with the la error bound, shown in Figure 6.16 and Figure 

6.18, which shows that the maximum variation in the damage index (due to electrical noise) 

at any particular damage level is not more than 0.1. Comparison of the error bound and 

the sensitivity analysis results also shows that the CRA approach is less sensitive to noise 

compared to the ETFE based approach. 
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6.4. Conclusion 

The use of two nonparametric system identification techniques namely, the empirical 

transfer function estimation approach and correlation analysis approach were investigated 

to estimate the time-series fatigue damage states. Novel dual sensing method is used to 

perform ultrasound input based system identification. Prom the numerical study it was 

found that the correlation based damage index estimation follows a better trend of cu

mulative damage growth compared to the empirical transfer function estimation based 

approach. The damage indices were estimated using both narrowband based burst input 

and broadband based chirp input. It was found that the damage index estimation based on 

the broadband chirp input outperforms the narrowband input based damage index estima

tion. Additionally, two different sensor configurations were studied. It was observed that 

the sensor configuration with sensors near the actuator was more effective for time series 

damage state estimation than the sensor configuration that had sensors placed away from 

the actuator. The time-series damage estimation approaches are validated on a complex 

Al-2024 cruciform specimen undergoing biaxial cyclic loading. The proposed unsupervised 

approaches can be useful for online health monitoring of any complex structure. 
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CHAPTER 7 

Passive Sensing Based Online Damage State Estimation under Constant Cyclic Fatigue 

Loading 

7.1. Introduction 

Unsupervised broadband active sensing based techniques discussed, which can be used 

to estimate sub-millimeter level damage over the entire fatigue life including stage-I, II 

and III crack growth regimes have been discussed in chapter 6. The techniques can effec

tively be used to monitor critical structural hotspots such as the lug-joint that connects the 

fuselage with the main wing box. Although, active wave propagation based interrogation 

technique can estimate very small damage, it has the following major drawbacks. Specifi

cally the sensing radius of an individual active sensing node is very small (in centimeters) 

and requires a large number of actuators and sensors to monitor a large structure. The 

need for a large number of sensors (in order of thousands) limits the usability of active 

sensing approach for large structures such as the entire wing of an aircraft. Also, the wave 

based techniques require an external excitation source, which is a major power driver. Fur

thermore, it is highly sensitive to reference boundary conditions. This sensitiveness can 

some times lead to false positive damage estimation if there is a little change in reference 

condition that does not necessarily affect the structural integrity. Based on the advantages 

and disadvantages of active sensing techniques it is practical to apply active wave based 

techniques for highly sensitive and tightly controlled structural hotspots (e.g., lug joint 

connectors that connect aircraft wing with the fuselage, landing gear, etc.). The overall 

structure on the other hand can be monitored using any vibration based passive sensing 

techniques ([116], [117]). The passive sensing technique has some advantages over active 

wave based techniques. For example passive techniques are more global and can monitor 
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a large structure if sensors are placed strategically. In addition, passive sensing techniques 

do not require any external power source as in case of active sensing. However, one of the 

major drawbacks in current passive sensing approach is hardware based, and specifically 

the type of sensor used. Though the use of different type of sensors are application specific, 

the accelerometer based damage monitoring approaches ([28], [118], [119]) are less sensitive 

for detecting smaller damage. In the above mentioned works the damage signatures are 

prominent only during the final failure regime. To alleviate the disadvantage of both wave 

based active sensing and accelerometer based passive sensing approaches, in the present 

work a novel strain gauge measurements based passive damage interrogations technique is 

developed. Though the strain gauge measurement is more local to accelerometer measure

ment, it is more global to wave based active sensing techniques. The strain gauges can be 

placed strategically in structural hotspots for passive and continuous monitoring of fatigue 

damage. It must also be noted that the strain gauge sensing techniques are more matured 

compared to wave based active sensing techniques. They neither require any external power 

source, nor are they sensitive to slight change in reference boundary conditions. The present 

chapter discusses a novel strain gauge measurements based passive sensing techniques that 

can estimate time-series damage states under constant cycle fatigue loading. The approach 

is demonstrated for an Al-6061 cruciform specimen subjected to biaxial and constant cycle 

fatigue loading. 

7.2. Theoretical Approach 

Aircraft structures and other structural system undergo fatigue loading. Two differ

ent locations of the structure experience different strain fields. There exists a particular 

correlation pattern between the dynamic strains fields measured at those locations. Due to 
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Fig. 7.1. Schematic showing strain at two points of a structure and related time-varying 
transfer function. 

damage this correlation pattern changes. The change in correlation pattern can be mapped 

as a time-varying transfer function or can be a measure of time-varying damage condition. 

The schematic of the time-varying transfer function (Hn) between dynamic strain at two 

points is shown in Figure (7.1). In practical applications fatigue damage condition can 

be monitored in real-time by collecting online signals from passive sensors such as strain 

gauges. By using the strain measurements at two different locations the damage state of the 

structure between those two points can be estimated. To estimate the time-series damage 

states, the overall fatigue life can be divided into multiple short term discrete instances 

as shown in Figure (7.2). The strain measurements at those short term discrete instances 

can be used to estimate the corresponding damage states. The details of the damage state 

estimation approach is discussed in the following subsections. 
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Fig. 7.2. Schematic showing the division of overall fatigue life to multiple discrete short 
term instances 

7.2.1. Online nth damage level transfer function estimation 

At any particular damage level, the damage state of the structure is assumed to be 

unchanged and the corresponding output sensor measurement can be mapped with the 

input sensor measurement over a time invariant transfer function. As the state of the 

structure changes, the input-output mapping becomes time variant and the corresponding 

transfer function has to be estimated recursively. A typical nth damage level block diagram 

that maps the input sensor measurements with the output sensor measurements is shown 

in Fig. 7.2. The fast scale z-domain transfer function P{z) between input u and output y 
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Fig. 7.3. Block diagram for fast scale transfer function. The transfer function is an 
instantaneous representation of the time degrading structure at any typical damage level. 
However as the damage grows the transfer function also changes leading to a time variant 
approach of system identification. 

at n damage level can be represented as: 

y(t) = Hn(z)u(t) + v{t) 

= (b0 + hz'1 + b2z~2 + ... + bMz-M)u(t) 

(7.1) 

where z~m;m = 0 , 1 , . . . M are the backspace operators of the pulse transfer function 

P(z) and bm;m = 0 , 1 , . . .M are the finite impulse response (FIR) [110, 111] coefficients. 

Eq. (7.1) can be rewritten in the discrete domain as 

y(t) = bQu(t) + bxu{t - 1) + b2u(t - 2) 

+ . . . + bMu(t -M) + u(t) (7.2) 
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7.2.2. Online nth damage level damage index estimation 

The slow scale damage index, an, is the representative damage state obtained from 

nth damage level fast-scale sensor measurements. The damage index can be derived by 

evaluating the mth lagged output y(t + m) from Eq. (7.2) and pre multiplying the input 

u(t), obtaining 

u(t)y(t + m) = bou(t)u(t + m) + b\u{t)u{t — 1 + m) 

+ b2u(t)u(t - 2 + m) + ... (7.3) 

+ bMu{t)u(t - M + m) + u{t)v{t + m) 

Applying expectation operator to both sides of Eq. (7.3) and assuming independence be

tween noise and the input signal, the mth lagged cross-correlation coefficients can be ex

pressed as 

7uy(m) = bo'juyim) + juy(m - 1) + b2'juy(m - 2) + ... 

+ bMluy(m-M) ;m = 0 , l . . . , M (7.4) 

With known input (u) and output (y) time series, the mth lagged cross-correlation co

efficients 7̂ 2,(771) and auto-correlation coefficients 7u(m), the FIR coefficients bm;m — 

0 , 1 , . . . M can be estimated. To estimate M + 1 FIR coefficients, M +1 algebraic equations, 

given by Eq. (7.4), need to be solved. The solution of M + 1 equations involve inverting 

a (M + 1) x (M + 1) autocorrelation coefficient matrix, which becomes computationally 

expensive in the context of online applications. To circumvent this problem the damage 

state equivalent damage index can be estimated. Based on the cross-correlation coefficients 
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7uj/(m) a new damage index is formulated, which is expressed as follows: 

V Lm=o ((7«y)o(m)r 

where (7u3/)n(wi) represents n"1 damage level cross-correlation coefficients, and {r)uy)o{™) 

represents reference condition cross-correlation coefficients. 

7.3. Numerical Results 

7.3.1. Fatigue experiment and data collection 

To numerically validate the developed methodology, fatigue test was performed on an 

Al-6061 cruciform specimen under biaxial loading. The loaded cruciform specimen in an 

MTS biaxial fatigue test frame can be seen in Fig.7.4. The specimen was subjected to a 

constant amplitude fatigue loading with maximum amplitude (amax) 4 kips and load ratio 

R — 0.1, and the biaxial machine actuator was operated with a frequency of 10 Hz. It 

should be noted that, the maximum stress amplitude was equal to two thirds the yield 

stress ay. Based on nonlinear finite element analysis of cruciform specimen, the yield 

stress was approximated as ay — 6kips. Also note that both the x-axis actuator and y-axis 

actuator of the biaxial frame were subjected to in-phase fatigue loading. For online state 

estimation, passive strain gauge sensors were used. One uniaxial strain gauge was mounted 

on the horizontal flange (Fig. 7.5b), and another on the vertical flange (Fig. 7.5b) and 

one biaxial rosette (with two strain gauges perpendicular to each other) strain gauge was 

mounted on the web area (Fig. 7.5a) of the cruciform specimen. In addition, a hole in the 

center of the specimen was made to create crack initiation in the web area of cruciform 

specimen. To accelerate damage growth, an EDM notch of 1 mm in length was made at 

left bottom quadrant boundary of the central hole (45° to the vertical axis). A 48 channel 



www.manaraa.com

137 

NI PXI system was used to collect the strain gauge signals and the measurements from 

the biaxial machine load cells. In addition, a high resolution SONY camera was used to 

visually monitor the crack growth. The data acquisition system and the computer capturing 

the visual image were synchronized with the biaxial machine controller to collect the time 

synchronized data/ image at a specified interval of AN = 1500cycles. The data and image 

collection started at approximately 11 kcycles. The image and sensor data were collected at 

47 different time instances. For the first 44 instances, the signals and images were collected 

while the biaxial machine was running and during the last three instances the data were 

collected when the machine was stopped. This leads to a total of 44 different damage 

cases with the last damage state occurring at 75.5 kcycles. The proposed MATLAB based 

prognosis algorithm was also synchronized with the data acquisition system to estimate the 

current damage state, and to predict the future damage state and remaining useful life in 

real time. 

7.3.2. Time-series damage state estimation 

Strain gauge measurements were mapped as input and output. For example, the 

signal (e^) from the strain gauge mounted on the horizontal flange (or X-arm) of the 

cruciform specimen was considered as the input signal u, whereas the signal (ejf) from the 

web mounted stain gauge was considered as output y. It should be noted that both the 

horizontal axis strain (ejf) and the vertical axis strain (e|^) were measured by two different 

strain gauges placed perpendicular to each other. Comparison of input strain (ef) and 

output strain (ejf) at different damage level are shown in Fig. 7.6. The figure shows the 

comparison for four different damage cases, damage case 7 (at 20 kcycle), damage case 20 
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Fig. 7.4. Al-6061 cruciform specimen loaded in a MTS biaxial fatigue test frame. 

Fig. 7.5. Undamaged and damaged condition of cruciform specimen: a) shows the 
undamaged cruciform specimen. This rear view of the specimen also shows the location 
of two strain gauges mounted in the web area, b) shows the final damage condition (at 
75.5 kcycles) of the cruciform specimen. This front view of the specimen also shows the 
location of two strain gauges: one mounted on horizontal arm and the other mounted on 
the vertical arm of the specimen. 
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(at 39.5 kcycle), damage case 42 (at 72.5 kcycle) and damage case 44 (at 75.5 kcycle). Prom 

the figure it can be seen that there is no clear trend between input and output strain at 

different damage levels. Rather than directly using the time series data for different damage 

case comparisons, using Eq. (7.4), the cross-correlation coefficient between input and output 

was found for different damage cases. The comparison of cross-correlation coefficients for 

damage level 1 (reference case at 11 k cycles) with cross-correlation coefficient at different 

damage levels are shown in Fig. 7.7. Figure 7.7a, 7.7b, 7.7c, and 7.7d, show the comparison 

of cross-correlation coefficients of damage case 1 with damage case 7, damage case 20, 

damage case 42 and damage case 44, respectively. It is to be noted that the results shown 

in Fig.7.7, the x-axis flange strain (e^) and x-axis web strain e]f) are respectively taken 

as input u and output y. Also, from Fig.7.7 it can be seen that the cross-correlation plot 

shows a better trend of damage growth, compared to the direct time series measurements 

shown in Fig. 7.6. However, to compare the quantitative damage states between different 

damage levels, the scalar damage index shown in Eq. (7.5), was evaluated for the different 

damage states. Figure 7.8 shows the damage indices evaluated for two different output 

measurements, ejf and e^, against input measurements e^ from horizontal (x-axis) flange 

starain gauge. The figure shows a clear trend of damage growth with e% as output strain 

compared to e^ as output strain. This is because the input signal e£ is poorly correlated 

with the y-axis web strain (e|^) measurements. Figure 7.8 also shows that with respect 

to (™ as the output strain, except for final failure regime, there was no clear trend in 

damage growth. The higher damage indices during the final failure regime are possibly due 

to presence of shear strain components. Also from Fig. 7.8 a good correlation between 

normalized visual measurements and estimated damage indices (found with respect to ejf 
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Fig. 7.6. Input output strain comparisons at different damage levels. 

as output) is also observed. It must be noted that, the visual measurement is available up 

to damage level 29 (up to 53 keyele). After the 29*'1 damage level, it was found that the 

camera went out of focus. In addition to the strain signal as input, damage indices were also 

obtained using biaxial frame load cell measurements (x-axis load cell). The corresponding 

damage indices are shown in Fig. 7.9, and a similar trend in damage index growth, as 

in the previous case (with x-axis flange strain measurement as input), can be observed. 

However, it is noted that in a real life scenario, it is hardly possible to directly measure the 

loads applied to the structure. On the other hand, it is realistic to mount strain gauges 

or small sensors at required locations without affecting the structural integrity of the host 

structure. Therefore the results presented in the subsequent sections are based only on the 

strain gauge based data. 



www.manaraa.com

141 

so lilllliiiiiiiiij,, 
20 lUHllnllHttHlllKlai 
10 ̂ ^^^^^^^HHH 
°̂ ^̂ ^̂ ^̂ ^̂ ^̂ H 

1 ° ̂ ^^^^^^^ ÎM 
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reference level at 11 kcycles. 

7.4. Conclusion 

An online state estimation technique based on passive strain gauge measurements is 

proposed. A novel damage index based on correlation of dynamic strain measurements at 

two different locations of a structure is proposed. The proposed approach is validated on an 

Al-6061 cruciform specimen subjected to biaxial constant cycle fatigue loading. Numerical 

results showed good correlation between online estimated time-series damages states and 

the corresponding normalized visual measurements. It is to be noted that the proposed 

approach works well only when the applied cyclic load is constant. With this in mind the 

following two applications can be envisioned: 

• For aircraft health monitoring (e.g connection between wing and fuselage), when the 

aircraft is in the ground, any particular subsystem (e.g wing) health at any discrete 

file:///fiWf
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Fig. 7.8. Variation of damage index with fatigue cycle. Flange (x-axis) strain measure
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Fig. 7.9. Variation of damage index with fatigue cycle. Horizontal axis (or x axis) 
biaxial frame load-cell measurements as input and web (x and y-axis) strain measurements 
as output. 
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instances (or after specified flight hours) can be assessed by applying a fixed cyclic 

input load applied to that particular structure. The fixed load can be applied using 

any external source such as an electro dynamic shaker or using an internal source 

such as internal cabin pressurization or depressurization. Similar approach can also 

be followed in the time-series damage state estimation of rotorcraft systems (e.g., for 

the connection between rotor blade and hub). 

• At present, many fatigue life models estimate the relation between fatigue crack 

growth rate and change in stress intensity factor. These laboratory condition re

lations are often estimated under constant cycle fatigue loading. To estimate the 

above relation, potential drop method is often used, but the potential drop method 

is suitable only for few specific geometries. However, the proposed dynamic strain 

measurement based damage state estimation approach is more versatile and can be 

applied to monitor damage in any complex geometry. 
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CHAPTER 8 

Passive Sensing Based Online Damage State Estimation under Random Cyclic Fatigue 

Loading 

8.1. Introduction 

In the chapter 7, the use of strain gauge measurements for real-time damage state 

estimation under constant fatigue loading has been demonstrated. However, compared to 

damage interrogations under constant fatigue loading, damage estimation under random 

loading is more involved. The present chapter discusses a novel strain gauge measurement 

based passive sensing technique that can be used to estimate time-series damage states 

under random loading. The approach is demonstrated for an Al-2024 cruciform specimen 

subjected to biaxial random loading. 

8.2. Theoretical Approach 

Unlike the constant loading case passive sensing based damage state estimation under 

random loading condition is more complicated, due to the variation in the strain correlation 

(between two points) pattern with varying loads. This means it is not possible to identify 

whether the correlation pattern change is due to change in load or to damage. In the 

previous chapter, load information was not considered in the damage index formulation. 

However, for accurate damage state estimation under random loads, loading information 

in the damage index formulation needs to be considered. In addition to the loading infor

mation, other time varying input parameters such as temperature and humidity may also 

be included in the damage index formulation. Similar to the chapter 7, estimation of the 

time-series damage states, the overall fatigue damage process can be divided into multiple 

short term discrete instances as shown in Figure 8.1. However, unlike the chapter 7, at 

any discrete damage instances the transfer function mapping (Figure 8.2) between strain 
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Discrete short term instances 

£ ( t ) 

U ( t ) 

Time' 

Fig. 8.1. Schematic showing the division of overall fatigue life to multiple discrete short 
term instances 

measurements at two points is a function of applied random load. In Figure 8.2 Hn(ju) 

represents the transfer function between input strain tt(= ei) and output strain y(= e2) at 

location 1 and 2, respectively. Both the input and output strain measurements are function 

of applied random load U and damage condition of the structure at that point of time. 

Details of the damage index formulation are discussed in the following subsections. 

8.2.1. Dynamic model estimation 

One of the major steps in the proposed time-series damage state estimation approach 

is to estimate the nonlinear dynamic model using strain gauge and environmental load 

measurements. Two such models have to be estimated one between environmental loading 

U and input strain u(= e\) at location 1 and the other between environmental loading U 

and output strain y(= e2) at location 2. The following sections describe the procedure for 

dynamic model estimation. 
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Fig. 8.2. Schematic showing strain at two points of a structure and related time-varying 
transfer function. 

8.2.1.1. Generic nonlinear dynamic model 

Assume that the (n = Nth) damage level can be described by sensor signals acquired 

between n = N — Ap and n = N + Ap fatigue cycle, where AN is the interval in fatigue 

cycles between which the damage state has to be estimated. It is assumed that during 

n = N — 4 p to n — N + 4 p fatigue cycle, the damage condition of the structure remains 

unchanged. The sensor measurements between n = N — ̂ ~ a n d n = N + 4 p fatigue 

cycles are indexed by m = 0 , 1 , . . . , M . The nth damage level nonlinear dynamic model 

[120] between environmental input Un(m) = {Ln(m),Tn(m),Hn(m)} and input strain 

un(= ei) at location 1 can be expressed as 
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xn{m) = g:(xn(m-l),Un(m),<r) (8.1) 

un(m) = / i : ( / ( m ) , [ / n ( m ) , ( f ) (8.2) 

Similarly the nth damage level nonlinear dynamic model between environmental input 

Un(m) — {Ln(m),Tn(m),Hn(m)} and output strain yn(= ey) at location 2 can be ex

pressed as 

x
n(m) = ^ ( a ; n ( m - l ) , [ / n ( m ) , ( r ) (8.3) 

yn(m) = ^ (x" (m) ,C / " (m) , ^ ) (8.4) 

where the superscript n represents the nth damage level, x"(») represents the nth dam

age level hidden states, dn is the quantitative value of damage condition at nth damage 

level, Un(m) = {Ln(m),Tn(m),Hn(m)} represents the input environmental conditions 

with Ln(m),Tn(m) and Hn(m), represent the nth damage level load, temperature and hu

midity, respectively, with lag coefficient m. Ln{m) is a vector with input from multiple 

loading sources. In addition gVs and hV N are two nonlinear mapping functions. In the 

present work with laboratory test condition there is not much change in temperature and 

humidity. Because of this in numerical validation of the developed techniques the temper

ature and humidity variables will not considered. However, for generality temperature and 

humidity variables are included in the discussed theoretical formulation. 
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Fig. 8.3. Schematic showing various terms of Volterra series expansion [122]. 

8.2.1.2. Nonlinear dynamic modeling using Volterra kernel 

Nonlinear dynamic modeling and signal processing have been gaining increased interest 

from researches in recent years. Numerous researchers [121] have contributed to the devel

opment and increased understanding of these fields. Examples of different nonlinearities 

are: smooth nonlinearities, multiple-values nonlinearities, e.g., hysteresis, non-smooth or 

nonlinearities with discontinuities. The smooth nonlinearities can be represented by poly

nomial models. To describe a polynomial nonlinear system with memory, the Volterra ex

pansion has been the most widely used model for the last thirty years. The continuous-time 

Volterra filter model is based on Volterra series expansion. The output depends linearly on 

the Volterra series coefficients as shown in Figure (8.3). Using causal discrete-time Volterra 

filter the relation between environmental input Un(m) and input strain un{= e{) (Eq. 8.2) 

can be given as 
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un{m) = {K)o + ^ K ) i ( i i M m - t i ) 
n=0 

OO OO 

+ EEK^i'^Mm-iiMm-is) 
j 1 = 0 i 2 = 0 

OO OO 

+ ... + £...J](Wi,-,g%-ii)...%-g (8.5) 
»l=0 i p = 0 

Similarly the Volterra series relation between environmental input Un(m) and output strain 

yn(= ei) (Eq. 8.4) can be given as 

yn{m) = {hn
y)Q + £ > | | ) i ( » i ) t f ( m - i i ) 

i l = 0 
OO OO 

+ E E (^)2(»i, i2)t/(m - ti)C/(m - i2) 
i 1 = 0 i 2 = 0 

OO OO 

i i = 0 j p = 0 

In Eq. (8.5 and 8.6) (W,\)o is a constant and {(/&?.))j(*i> *2> • • • 5 *?)> 1 < j < oo} is the set of 

j t / l-order Volterra kernel coefficients. Unlike the case of linear Volterra dynamic model, it is 

difficult to characterize the nonlinear Volterra dynamic model by the system unit impulse 

response. Also, as the order of the polynomial increases, the number of Volterra parameters 

increases rapidly, thus making the computational cost extremely high and uneconomical. 

8.2.1.3. Nonlinear dynamic modeling using Bayesian Gaussian Process 

The Volterra kernel nonlinear model discussed above is computationally intensive for 

highly nonlinear systems. In addition, polynomial type Volterra methods are more suitable 
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to model smooth nonlinearity. However fatigue damage consists of multiple-valued non-

linearity, e.g., hysteresis effect in stress-strain relation and requires a better robust approach 

to model it. The Bayesian Gaussian Process (GP) model [98, 83, 84] can be useful for 

modeling the nonlinear dynamics associated with the individual discrete damage instances. 

Using GP based high-dimensional kernel transformation, the nonlinear relation between 

the input environmental loading Un(m) — {Ln(m),Tn(m),Hn(m)} and the input/output 

strain (i.e un(— ei) or yn(= 62) can first be mapped in a high-dimensional space. The high-

dimensional transformation is performed using assumed kernel functions [98, 83, 84]. It is 

assumed that in the transformed high-dimensional space the input environmental load and 

the input/output strain follows a linear relation. In the high-dimensional space the mapping 

between the new transformed input X = $(Un(m)) = $({Ln(m),Tn(m),Hn(m)}, un(= 

e\) or yn(— £2)) a n d observed input/output strain (i.e un(— ei) or yn{— €2) can be modeled 

as a Markovian model. It is to be noted that the high-dimensional mapping is performed 

in a subtle Bayesian framework and the mapped input-output relation cannot be directly 

visualize. With first order Markov dynamics assumption and considering process noise $!\ 

the equivalent form of Eq. (8.1 and 8.2) for input strain un(= e\) at location 1 can be 

expressed as 

Xn{m) = gn
u(X

n(m-l),<r-AZ) + dn
x{m) (8.7) 

un(m) = hn
u(X

n(m),dn;BZ) + ^(m) (8.8) 

and for output strain yn(= £2) at location 2 can be expressed as 
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Xn(m) = ^ ( A - n ( m - l ) , d " ; ^ ) + ^ ( m ) (8.9) 

yn(m) = h;(Xn(m),dn;B^) + ^(m) (8.10) 

where Xn{m) 6 Rd denotes the d-dimensional latent coordinates at mth lag coefficient of 

the nth damage level. Also $!\ is the zero-mean, white Gaussian process noise, g?, and /i!\ 

are nonlinear mapping functions parameterized by AV\ and JB/\ respectively. The nonlinear 

mapping functions g?*. and /i!\ at nth damage level can be expressed as linear combination 

of basis functions 4> and ip and is expressed as below. 

g^{Xn(m - l),dn;An) = £ A ? # (8.11) 
i 

/i£}(X
n(m - l),dn;Bn) = J2Bj^j (8-12) 

3 

where An = {A?, A%,..., An
M) and Bn = {J3f, B J , . . . , B^} are weights. In order to fit the 

parameter of this model to training data, one must select an appropriate number of basis 

function i.e., in other way to select the proper order of the system. One must ensure that 

there is enough data to constrain the shape of the basis functions. Ensuring enough data 

and finding the proper order of the system can be very difficult in practice. However, from 

a Bayesian perspective, the specific form of mapping function g?. and h?, are incidental 

and therefore should be marginalized out. Following GP regression modeling [98, 83, 84], 

the discrete short term time-series measurements at nth damage level can be modeled for 

the input strain un(= ei) as 
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/(u" |{X£Jm = 1 , . . . ,M , 6 0 = j-^^===exp[-l-{un - iiu)
T{KZ)-\un - ^ ) ] (8.13) 

Similarly for output strain yn(= ei) as 

/ (y B | {3C} m = 1 , . . . l M , e j ) = ^)Mll^-^exV\-\{un - N)T{K^)-\u" - ^ ) ] (8.14) 

where u n = [un(m = \),un{m = 2),...,un(m = M)\ or u n = [e?(m = l),e"(m = 

2) , . . . , e" (m = M)] is the short term input time series at nth damage level. Similarly 

y n = [yn(m = 1), yn(m = 2 ) , . . . , yn{m = M)] or y n = [e£(m = 1), e^(m = 2 ) , . . . , Q{m = 

M)] is the short term output time series at nth damage level. In addition K™ and K™ are 

M x M kernel matrices with respect to X —> u and X —> y mappings. The elements of 

kernel matrix can be found using assumed kernel functions. There are different types of 

kernel functions (e.g., constant kernel, Radial basis kernel, Multilayer perceptron kernel, 

etc.) [97]. Form the modeling point of view the choice of kernel should best suit our data. 

In the present application Multilayer perceptron kernel (MLP) kernel is used. The elements 

of nth damage level kernel matrix can be found using MLP kernel function and is given as 

below. 

i^?-))iJ — ^(Xt,Xj) 

Xj (&?.)) u)X-j 

= ( w ^ 1 / w T , _ v . : ' T , „ , „ . +(*(o>« -1 2!i_I± 
^(xf (flft̂ Xi + l x x j c ^ x , +1) 

(8.15) 
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In Eq. (8.15), (0j\)p, (Q?.\)w, (0?.))& are the process, width and noise hyperparameters, 

respectively. There are two sets of hyperparameters: 0 " = {(0™)p, (#")«,, (#„)&, (0£)tf) for 

X -> u mapping and 0™ = {(0™)p, (0£ )u>, (#£)&, (#£M for X —> y mapping and can be 

found by minimizing the following two negative log-likelihood functions. 

rC = —logdetKZ ~ ^ ( u " ) r ( K : ) - 1 u " - *£lo0n (8.16) 

r£ = -±logdetjq - i ( y n ) T (K^) - 1 y r i - y Z ^ T r (8.17) 

8.2.2. Time-series fatigue damage state estimation 

Above subsection discussed how to estimate the nonlinear dynamic model for any indi

vidual damage instance. This subsection discusses how to estimate the time-series damage 

states at individual damage instances. It is to be noted that the estimation of dynamic 

model for any individual damage instance is a fast scale dynamical system identification 

problem. Compared to this, the time-series damage state estimation for entire fatigue 

life is a slow scale dynamical system identification problem. The step-by-step process for 

time-series damage state estimation for the entire fatigue life is discussed below. 

8.2.2.1. Reference model estimation 

Given the reference environmental condition U°(m) = {Ln(m),Tn(m), Hn(m)} and 

input strain u°(= e§) and output strain y°(= e°) the reference nonlinear dynamic models 

Hu^u 0-e t o estimate 0°) and Hy (i.e to estimate 0°) can be estimated by minimizing 

the respective reference condition negative log-likelihood functions given below. 
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T° = -\log det K° - liuYiKr'u0 - ^log2n (8.18) 

r°y = -\iog det K; - \{y*nKrlyQ - Yl°92n (8-19) 

In Eq. (8.18 and 8.19) the kernel matrix can be written in the functional form as 

K°u = n(u0,u0,k(xi,xj),e°u) (8.20) 

In Eq. (8.20 and 8.21) A;(X;,Xj) is the assumed kernel function given in Eq. (8.15). 

8.2.2.2. Current damage level dynamic strain mapping 

Once the reference (at n = 0) level dynamic models #[}_„ and Hy are estimated, 

for a new environmental conditions U" — [Un(m = l),Un(m = 2 ) , . . . , Un(m = M)]T, 

the corresponding input strain U™ = [u™(m = 1), Up(m = 2 ) , . . . , u™(m = M)] and output 

strain y™ = [y™(m = 1), y™(m = 2 ) , . . . , y™(m = M)] can be predicted using the probability 

density function (pdf) given below. 

/ « J 9 ° , K° , Xn(m)) = N [//„(m), ^ ( m ) ] ; m = 1,2,. . . , M (8.22) 

/ ( ^ | G ° , K ° , X " ( m ) ) = N [ M y ( m ) , ^ ( m ) ] ; m = l , 2 , . . . , M (8.23) 

where X n(m) = $(U n (m)) is the high dimensional transformation of the new environmental 

input U n(m) at nth damage level. N represents the Gaussian distribution with mean 
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fiu(m) = (k2(m))r(K°)-1u° ; m = 1, 2 , . . . , M 

pyim) = ( k J H ) ^ ) " 1 / ! m = 1, 2 , . . . , M 

and variance 

^ ( m ) = <(m) - ( k ^ m ) ) ^ ^ ) - ^ 0 ; m = 1, 2 , . . . , M 

a2
y(m) = Kn

y{m) - ( k ^ m ) ) ^ ) " 1 ^ ; m = 1,2,..., M 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

where (M x M) K?N matrix, (M x 1) k(\(m) vector and scalar «;!\(m) can be found using 

the larger (M + 1 x M + 1) partitioned matrix given below. 

Kft(m) 
* ? • ) kf.)(m) 

; m = 1,2, . . . , M (8.28) 

(kfr(m))T «ft(m) _ 

Following Eq. (8.22 - 8.28) the predicted input strain at nth damage level can be rewritten 

as u^ = [//„(m = 1), /x"(m = 2 ) , . . . , /*„(m = M)] and output strain given as y™ = [//™(m = 

l ) , / ^ (m = 2 ) , . . . , ^ ( m = M)] 

8.2.2.3. Current damage level error signal estimation 

Due to damage the nonlinear dynamical model given by Eq. (8.1 to 8.4) will change 

from one damage level to other damage level. However if the dynamic model parameter kept 

fixed (as reference model parameter), the nth damage level predicted input strain ii™ will 

not be same as the actual input strain u™ (measured in real-time from the corresponding 
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sensors). Similar is the case for predicted output strain y™. The error in predicted signal 

and actual signal at a given damage level can be a measure of the damage state at that 

damage level. The error signals e!\ for both the input and output strain are given as 

< M = "«("*) - «?("») ; m = 1,2,.. . , M (8.29) 

e ? M = Vaim) ~ y%(m) ; m = 1, 2 , . . . , M (8.30) 

8.2.2.4. Time-series damage state estimation 

Once the error signal with respect to the input and output strain are estimated the 

corresponding scalar damage index an at nth damage level can be estimated using either of 

the following two damage index formulations. The expression for root mean square error 

based damage index is given as, 

a = 
\ 

m=M 

h E K or y)(™)]2 ;n = l,2,...,N-AN,N,N + AN (8.31) 
M *-~iL (u o r y) 

where e?Jm) are the error signals as described in Eq. (8.29) and (8.30). This damage index 

formulation can depend on either the input error signal (e"(m)) or the output error signal 

(e"(m)). Another damage index formulation using both the input error signal (e„(m)) and 

output error signal (e^(m)) is described below. This damage index is based on previously 

discussed approach (chapter 7) for online damage state estimation under constant amplitude 

fatigue loading in which, the damage index was formulated by directly correlating the 

input dynamic strain (un(m) = e"(m)) with the corresponding output dynamic strain 

(yn(m) = e~2 (m)). In contrast for the present random loading case, the damage index is 
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formulated by correlating the input error signal (e™(m)) with output error signal (e™(m)). 

The expression for the developed damage index is given below. 

\ £ ™ = M M ( 7 e ° u e » ) 2 

where 7™u6 (m) is the mth lagged cross correlation coefficient between the error signal eu 

and ey. Also superscript 'n' and '0', represents the nth and reference state damage levels 

respectively. It is to be noted that the reference damage level does not have to be the 

healthy condition of a structure. 

8.3. Numerical Results 

Validation of the numerical model discussed in the previous section is a complex task. 

The numerical prediction must to be validated by experimental results. Towards the vali

dation goal, a fatigue test was conducted under biaxial random load. Using the real-time 

test data damage states were estimated at different fatigue damage levels. The details of 

the numerical exercise are discussed below. 

8.3.1. Fatigue experiment and data collection 

The experimental validation of the model developed was carried out using data from 

fatigue tests performed on an A1-2024-T351 cruciform specimen under biaxial random load

ing. The cruciform specimen loaded in an MTS biaxial fatigue test frame can be seen in 

Figure 8.4. The specimen was instrumented with strain gauges as shown in Figure 8.5A. 

Two strain gauge rosettes are placed at different locations to measure the input strain ei 

and the output strain 62, respectively. In the present case the individual strain gauges 

of the 3-axis rosette gauges are aligned along the X-axis, 45° to X-axis and Y-axis of the 
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MTS frame, respectively. Although in a typical application it is not necessary to follow any 

particular alignment direction, for better correlation of sensor signals the input and output 

rosettes should be placed parallel to each other. Figure 8.5A also shows the healthy condi

tion of the cruciform specimen, while Figure 8.5B shows its failed condition. To accelerate 

the crack propagation, a 1.5 mm EDM notch was made at the bottom right boundary of 

the central hole. Also, to further accelerate the crack growth, the specimen was fatigued 

under constant cycle loading (maximum load of 4800 lbf and minimum load of 480 lbf), to 

achieve a visible crack (in front of the EDM notch) length of 1-2 mm. Then the specimen 

was tested under biaxial random loading. From the finite element based stress analysis 

results the yield load was found to be 7200 lbf. Based on this limiting yield load random 

load patterns were generated. The original patterns were generated using MATLAB and 

then coded to the MTS controller. Typical 1 block (equivalent of 300 cycles) of original 

random load pattern is shown in Figure 8.6. It is to be noted that for the present random 

loading case all the blocks are non-repetitive which means that each block is different from 

every other block. The random loading patterns were generated using MATLAB random 

number command with keeping maximum load limitation equal to 80 percent of the yield 

load and minimum load limited to 6.6 percent of the yield load. For each and every ran

dom loading block strain gauge signals and MTS load cell signals were acquired using a 

48-channel NI-PXI (shown in Figure 8.4) data acquisition system. During testing both the 

X and Y-axis load frame actuators were programmed to operate at the same phase with 

a cyclic frequency of 10Hz. However, to capture high-frequency damage signatures, the 

strain gauge signals were acquired with 1000 Hz sampling frequency. In order to maintain 

same data length, the MTS X and Y-axis load cell signals were acquired with the same 
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Fig. 8.4. Biaxial testing experimental setup. The figure shows a MTS biaxial/torsion 
frame mounted with an Al-2024 cruciform specimen. 

sampling frequency. The load cell and strain gauge measurements for a typical (at healthy 

or reference state) random load block is shown in Figure 8.7. Part of the data based on 

Figure 8.7 is shown in Figure 8.8 in a magnified form. It is to be noted that, the present 

work a data driven state estimation approach that only requires the statistical correlation 

of different sensor signals. Hence it was not necessary to acquire the true strain field of 

the structure and so the strain gauges were not calibrated. Figures 8.7 and 8.8 show the 

uncalibrated strain signals. 
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Fig. 8.5. A) Instrumented Al-2024 undamaged cruciform specimen. Two 3-axis rosette 
strain gauges were placed on both sides of the crack path to monitor dynamic strain. B) 
Damaged Al-2024 cruciform specimen. 
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Fig. 8.6. 1-block of random load. Each block of random load is equivalent to 300 fatigue 
cycles. Individual random load blocks were generated using MATLAB random number 
generator. 
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Fig. 8.7. Plot of the raw sensor signals collected at a typical (reference or healthy state) 
damage level. The plot shows both load cell (from MTS frame X and Y-axis load cells) 
measurements and signals from different strain gauges. 
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Fig. 8.8. Magnified version of the time-series signals shown in Figure 8.7 
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8.3.2. Reference nonlinear dynamic model estimation 

To estimate the real-time damage state of the cruciform specimen at different dam

age levels, the dynamic model is estimated at reference or healthy condition first. The 

reference condition signals were collected during the Is* random loading block. The non

linear reference models that map both the reference input strain u° = e° and output 

strain y° = e° with the reference environmental parameters U°, are estimated using 

Eq. (8.18-8.21). The present formulation is a multivariate formulation and can con

sider multiple fatigue affecting environmental parameters such as loading, temperature 

and humidity (U°(m) = {L°(m),T°(m),i/°(m)}). However, for the numerical study tem

perature and humidity were not included in the damage estimation process due to the 

controlled climate condition in the laboratory. With the biaxial loading condition, only 

X and Y-axis load cell measurements are considered as input environmental parameters 

(U°(m) = {Lx(m), L®(m)}). The reference strain gauge measurements from individual 

rosettes were first converted to equivalent strain and then mapped against the input refer

ence load U0(m). The equivalent strains eeq(m) for the individual rosettes are estimated 

using the following expression. 

^ M = | y | ( 4 M + eg(m)) + ^7lyM ; m = l,2,...,M (8.33) 

where, ex(m) and ey(m) are the measurements from x and y axis strain gauges of individual 

rosettes and -yXy{fn) are the corresponding shear strain components which can be evaluated 

using 
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lxy{m) - ^/2e45(m) - ex(rn) - ey(m) ; m = 1,2,. . . , M (8.34) 

Where, 645 (m) represents the measurements from 45° axis (to X-axis) strain gauge of in

dividual rosettes. The relation between input load (or stress) and strain follows highly 

nonlinear hysteresis pattern and requires nonlinear model estimation approach as devel

oped in Eq. (8.18-8.21). A typical hysteresis plot showing the relation between X-axis load 

cell measurements (Lx(m)) and X-axis input strain measurements ((u°)x(m) = (e^)x(m)) 

is shown in Figure 8.9. The corresponding hysteresis plot showing the relation be

tween X-axis load cell measurements (Lx(m)) and X-axis output strain measurements 

(G/°)x(m) = (c2)z(m)) *s shown m Figure 8.10. Based on the reference load measure

ments (U°(m) — {Lx(m), Ly(m)}) and estimated equivalent input strain u°(m) — e®(m) 

the multi input single output (MISO) reference input strain model Hy^u is estimated. The 

model estimation is performed to estimate the hyperparameters 0 ° = {(0„)p, (Ow> (®u)$} 

in Eq. (8.15). The hyperparameters are estimated by optimizing the negative log likeli

hood function T„ given by Eq. (8.18). Optimization is performed using conjugate gradient 

optimization techniques. Similar procedure is also followed to estimate the model hyper

parameters @y = {{9y)p, (0u)w, (#y)tf} f° r the multi input single output (MISO) reference 

output strain model Hy . Figure 8.11 and Figure 8.12 show the convergence history of 

T° and Ty function value, respectively. During the optimization process, the hyperparam

eters are initialized to reasonable values and then the conjugate gradient method is used 

to search for their optimal values. To evaluate the accuracy of estimated models the refer

ence level input strain ((u°)x(m) = (e°)x(m)) and output strain ((y°)x(m) = (e2)i(m)) a r e 
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Fig. 8.9. X-axis load cell measurements versus X-axis input strain measurements 

respectively regenerated using the estimated model parameters G° = {(#„)p> i^u)w, (#2)i?} 

and ©^ = {(8y)p, (8u)w, (8y)ti}- These regeneration of strain time-series are performed 

against the reference load measurements (U°(m) = {L^(m), Ly(m)}). The comparison be

tween actual input strain ((u°)x(m) = (e°)x(m)) and regenerated input strain time-series 

is shown in Figures 8.13 and 8.14. Similarly the comparison between actual output strain 

((2/0)z(m) = (e2)z(m)) a n d regenerated output strain time-series is shown in Figures 8.15 

and 8.16. It can be clearly seen that there is a good match between predicted strains 

and actual strains. The mean square error (MSE) between the predicted and actual strain 

for models #[}_>„ and Hy was found to be 3.8255e-005 and 2.8006e-005, respectively. 

The MSE can be further reduced by using better signal processing and global optimization 

techniques. 
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Fig. 8.10. X-axis load cell measurements versus X-axis output strain measurements 

8.3.3. Current damage level dynamic strain mapping 

Once the reference model parameters are estimated using Eq. (8.22-8.28), the current 

stage (nth damage level) input dynamic strain ((un)x(m) = (e")x(m)) and output dynamic 

strain ((yn)x(m) — {^2)x{m)) are predicted. The predictions are performed using the 

reference level models #[}_.„ and Hy discussed in the previous subsection and using the 

current level load measurements (Un(m) = {L"(m), L™(m)}). 

The comparisons of predicted and actual input dynamic strain for four typical damage 

levels is shown in Figure 8.17. The figure shows the prediction at different crack lengths 

of 4.1621 mm, 12.917 mm, 46.573 mm, and 70.939mm. Also, the comparison of predicted 

and actual output dynamic strain for the four damage levels are shown in Figure 8.18. The 

crack lengths are estimated from the images captured by a high-resolution camera. From 

Figures 8.17 and 8.18, it is clear that as the damage or crack grows the mismatch between 
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damage condition. 
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Fig. 8.14. Magnified version of the time-series signals shown in Figure 8.13. 
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Fig. 8.15. Predicted versus actual output dynamic strain at reference (healthy stage) 
damage condition. 
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Fig. 8.16. Magnified version of the time-series signals shown in Figure 8.15. 
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Fig. 8.17. Predicted versus actual input dynamic strain at different damage levels. 

the predicted and actual dynamic strain increases. If there had been no damage, ideally 

there should be a good match between predicted and actual dynamic strains. However, 

the estimated nth damage level nonlinear dynamic models #$_>„ and Hf} will no longer 

be the same as the reference condition models #£/_,„ and HJJ because of change in the 

internal dynamics of the structure due to damage. Since fixed (reference stage parameters) 

model parameters are used to estimate the current damage stage dynamic strains (for a 

new random load Un(m) = {L™(m), Ly(m)}), the predicted dynamic strain will not match 

its actual value. The difference increases as the severity of damage grows. 
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Fig. 8.18. Predicted versus actual output dynamic strain at different damage levels. 

8.3.4. Current damage level error signal estimation 

Once the current damage level dynamic strains are estimated, the corresponding error 

signal can be estimated using Eq. (8.29-8.30). The estimated error signals for the input 

dynamic strain predictions are shown in Figure 8.19 for four typical damage levels: crack 

length of 4.1621 mm, 12.917 mm, 46.573 mm and 70.939mm. The corresponding error 

signals for output dynamic strain predictions are shown in Figure 8.20. There is a clear 

trend developing as the damage level get higher. 

8.3.5. Time-series damage state estimation 

A discussion on how to estimate the current damage level (nth damage level) input and 

output error signals was presented before. The estimated error signals at different damage 

levels can be used to estimate the corresponding scalar damage states. The individual 

damage states can be estimated either using the root mean square error (RMSE) based 
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Fig. 8.19. Time-series input error signal at different damage levels 
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Fig. 8.20. Time-series output error signal at different damage levels 
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damage index or using the correlation analysis (CRA) based damage index given in Eq. 

(8.31) and Eq. (8.32), respectively. The normalized damage states estimated using root 

mean square error based damage index formulation is shown in Figure 8.21. The figure 

shows the normalized damage states estimated using both input strain error signal as well 

as output strain error signal. In addition, the figure shows the normalized crack length 

estimated from the visual image captured by a high resolution camera. It is to be noted 

that the random loading fatigue test was started with a precracked (with 1.5 mm crack 

in front of 1.5mm EDM notch) specimen. In the precracked specimen a stable crack grew 

up to the bottom wedge boundary resulting in a total length of 43.1 mm (refer Figure 

8.5B) then a second crack started at the top edge of the central hole. The stable crack 

(equivalent of 43.1 mm crack length) reached the bottom boundary of the central wedge 

in approximately 380680 fatigue cycles. Whereas, the second crack growth was unstable 

and the crack grew to a total length of 28 mm (Figure 8.5B) within 3320 fatigue cycles. 

Figure 8.21 only shows the time-series damage state estimation in the stable crack growth 

regime. For proper comparison the estimated damage states from both sensor signals and 

from visual image are normalized against their maximum value. From Figure 8.21 it can be 

seen that, the estimated damage states using the input strain error signal follows a similar 

trend as that of estimated damage states using the output strain error signal. However, 

it can be seen that, except during the end of stable crack growth regime, the estimated 

damage states do not follow the trend of normalized visual measurements. The clear trend 

in estimated damage states only during the final failure regime is also observed by other 

works [28, 119]). However it is clear that it is better to identify the fault trend long before 

the final failure regime. The correlation analysis based damage state estimation given by 
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Time-series damage states using root mean square error (rmse) based damage 

Eq. (8.32) can be used to improve the prediction horizon. The estimated damage states 

using Eq. (8.32) is shown in Figure 8.22. It can be seen that there is a very good correlation 

between predicted damage states and normalized visual measurements. The accuracy and 

applicability of the proposed approach can be further improved by using advanced signal 

processing algorithm. 

8.4. Conclusion 

A passive sensing based SHM technique that can be useful to estimate the real-time 

fatigue damage state of any complex structure subjected to random fatigue loading has 

been introduced. The predicted and actual dynamic strains at two different locations are 

considered. It is assumed that these two locations will ideally be positioned on oppo

site sides of the damage path. First, individual reference condition dynamic models are 
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Time-series damage states using correlation analysis (CRA) based damage 

estimated by mapping the reference condition applied load with the reference condition 

estimated equivalent strain. The reference condition equivalent strains are estimated using 

the measurements from 3-axis strain gauge rosettes placed at the corresponding locations. 

The reference condition dynamic models are estimated using Bayesian Gaussian process 

approach. Once the reference models are estimated, the dynamic strains are predicted for 

any applied load at any given instant of time using these models. The predicted strains 

are compared with the actual sensor measurements to estimate the corresponding error 

signals. Finally the error signals at the two locations are correlated to estimate the corre

sponding fatigue damage state. The approach is demonstrated for time-series damage state 

estimation of the complex geometry of an Al-2024 cruciform structure subjected to biaxial 

random loading. To verify the accuracy of the approach, the predicted damage states are 

compared with the actual damage states estimated using visual images. From the com-
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parison it is found there is a good correlation between the predicted and actual time-series 

damage states. Further improvement of the prediction accuracy can be achieved by using 

global optimization and advanced signal processing techniques. 
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CHAPTER 9 

Condition Based Fatigue Damage Prognosis and Residual Useful Life Estimation 

9.1. Introduction 

The conventional damage prediction approach uses either a deterministic physics based 

approach or a stochastic data driven approach, in order to predict the future progression of 

the damage and to estimate the residual remaining life of the structure. In either of these 

methods the damage tolerance and fatigue life predictions are obtained based on assumed 

structural flaws, regardless of whether they actually occur in service (i.e the prognosis is 

made before the diagnosis). Consequently, a large degree of conservatism is incorporated 

into structural designs due to these uncertainties. In realty, keeping track of the damage 

growth in a complex structural component manually is quite difficult and requires automatic 

damage state estimation. The availability of effective online (or autonomous) damage 

state estimation techniques offers adaptive damage state prediction and residual useful life 

assessment. The real-time damage state information from online state estimation model 

can be used as input to a predictive model to update the residual useful life estimation 

in the event of a new prevailing situation on a regular basis. The offline state prediction 

model (chapter 3 and 4) and online state estimation model (chapter 5 to 8) have been 

discussed before. The interrelations between the two models have not been discussed. The 

present chapter discusses the use of an integrated prognosis model, which combines the 

previously discussed online state estimation model with the offline predictive model. The 

aim of the integrated model is to estimate the condition based future damage states and 

the corresponding residual useful life. 
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9.2. Theoretical Approach 

The integrated prognosis model is an adaptive model that works in conjunction with 

real time sensor measurements. As shown in Figure 9.1, the integrated prognosis architec

ture has two distinct sub modules, the online state estimator and the offline state predictor. 

The online state estimator infers the current state of the structure from real time sensor 

measurements. Once the current state information becomes available, it is fed to the offline 

predictive model to predict the future states and the corresponding residual useful life is es

timated. The estimated current state updates the initial condition of the predictive model. 

The condition based damage prediction methods can be divided in to two groups based 

on the techniques followed for online state estimation. For active sensing based damage 

state estimation the estimated time-series damage indices (or direct sensor signal features) 

using Eq. (5.14), Eq. (6.10) and Eq. (6.11) do not follow exponential damage growth 

trend as in case of visual crack growth measurement. This is evident from the time-series 

damage indices shown in Figures 5.18, 5.19, 6.14, and 6.16. From these figures it can be 

seen that the estimated damage indices curve do not follow an exponential growth pattern 

as in case of visual crack growth measurements (Figure 5.3). This feature based damage 

cannot be directly fed to the offline predictive model for initial condition updating. It is 

to be noted that the offline prognosis model is largely based on the physics of damage 

propagation which would follow exponential damage growth patterns as in the case of vi

sual crack growth measurement. To use the active sensing based approach for condition 

based damage prognosis first the time-series damage features have to be mapped to global 

damage states (such as crack length) using a supervised approach as discussed in chapter 

5. The active sensing based condition based prognosis approach will be discussed in the 
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Fig. 9.1. Schematic of the integrated prognosis model 

following subsections. Contrary to the active sensing approach, the passive sensing based 

approach is more global. The estimated time-series damage indices from passive sensing 

approach follow exponential damage growth patterns as in case of visual crack growth mea

surement. This is evident from Figure 7.8 and 7.9 of chapter 7 and from Figure 8.22 of 

chapter 8. Hence the passive sensing based estimated damage indices can directly be fed to 

a prognosis model for condition based future damage state prediction. The passive sensing 

based condition based prognosis approach will be discussed in the following subsections. 

For the previously discussed offline prediction (chapters 3 and 4), Bayesian based GP data 

driven approach is followed. Note that an on-board prognosis system should be based on a 

data driven approach as it takes less computational time compared to finite element based 

physics model. Also to use the physics based prognosis model, the crack path needs to be 

known in priory, and therefore it is not suitable for on-board applications. 
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9.2.1. Condition based damage prognosis using passive sensing 

In previous chapters online state estimation model and offline state prediction model, 

were described individually. The present chapter discusses how the estimated online state 

information is linked to the offline model to reassess the future state and the corresponding 

residual useful life estimate (RULE). The estimated damage states are fed into the offline 

predictive model, as the online state information becomes available. As discussed in the 

previous subsection, the current condition damage states can be estimated either using 

the supervised active sensing based approach or using the unsupervised passive sensing 

approach. In the present chapter only the passive sensing based condition based damage 

prognosis is demonstrated. For the offline prediction, the previously discussed (chapters 3 

and 4) Gaussian process is used. Unlike the previous case of supervised GP model, in the 

present case a self supervised GP model is used. Here, "supervised" means that the GP 

model is trained with history test data from previously tested specimen(s). In the present 

self-supervised case, to predict the future damage of the test structure, the GP model is 

trained with the history data of the test structure it self. At a given instant the available 

time-series damage states estimated using the online model is used to train the GP model. 

In the present case constant cyclic fatigue loading is considered. For the purpose the damage 

index given by Eq. (7.5) can be used for the online damage state estimation. However, 

for passive sensing based damage state estimation under random loading Eq. (8.32) given 

in chapter 8 must be used. For the offline model a multivariate GP model is used. The 
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one-step ahead GP prediction model is given below. 

f(an+i\D = {•x.i,ai},x.n+i,kij(xi,Xj,@)i)j=iA..n) 

dGt{Kn) -exP(-ian+j-/n+l)2) (9.1) 
V (27r)det(Kn+1) ^ 2*l+1 

where fj,n+i is the one-step ahead predicted mean at damage level n + 1 and is given by 

Hn+i = kTK~1an; fc» = fc(xn+i,Xi)i=i,2,...n (9.2) 

on+\ is the one-step ahead predicted variance at damage level n + 1 and is given by 

&n+l = K~ k Kn >̂ ^t = k(xn+l,3Cj);=ij2,...n; 

K = fc(x„+i,xn+i) (9.3) 

The individual elements of the kernel matrix Kn in Eq. (9.2 and 9.3) are based on the 

assumed multi layer perceptron (MLP) [97] based kernel function given as 

kf(xi,xj,e) = 0PSin-1 

•X
Tf)w-jC • 

+ K (9-4) 
^(xf0™Xi+ l ) ( x ^ X n + l) 

The individual hyperparameters On in Eq. (9.4) can be evaluated using the procedure 

discussed in chapter 3. The one-step ahead GP model given in Eq. (9.1), recursively 

updates it parameter at each damage level. The update is performed for both the online 

and offline cases. For example, when a new online estimated state is available (say at 

nth damage level), then it is included in the previous damage level (at n — 1th damage 

level) training data set of the GP model. Accordingly a new set of hyperparameters (6) 

are estimated. Based on this new trained GP model and nth damage level online or true 

condition the (n + l)th damage level damage state is forecasted in offline. Similar to the 
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case of online data updates, the (n + l)th damage level forecasted state is included in the 

previous damage level (at nth damage level) training data set of the GP model, resulting in 

a new set of hyperparameters Q being estimated to forecast the next level i.e., the n + 2nd 

level damage state. This parameter update and current and future state estimation process 

is performed recursively as shown in Figure 9.1. The details of the input-output data set 

used in the parameter update are described below. 

9.2.1.1. Input-output data set for single step ahead prediction 

For single step ahead prediction, the Gaussian process prediction model given by Eq. 

(9.1), predicts the single step ahead damage index. For prediction of the (n + \)th damage 

index, the training data set D and test input vector x„+i can be stated as, 

D = 
i=d,...,n 

Training data matrix Target vector' 

ao a\ 

a\ a2 

a-d-i &d 

a-d a-d+i 

O-n-d an-d+l • • • a n - l On 

(9.5) 

X t i + l 

Test input data vector 

O-n-d+l O-n-d+2 
(9.6) 
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In Eq. (9.5 and 9.6) the subscript n symbolizes the nth damage instance or damage level, 

up to which the last online data was available, and d represents the dimension of the input 

space. 

9.2.1.2. Input-output data set for multi step ahead prediction 

For multi step ahead prediction, the GP model given by Eq. (9.1) recursively predicts 

the future state after the last online data available. However, unlike the single step ahead 

prediction model, the multi step ahead training data set D and test input vector x n + ^ 

are adaptively updated with offline predicted damage indices rather than online estimated 

damage indices. For prediction of the n + hth damage index the training data set D and 

test input vector xn+n can be written as 

D = X j 

Training data matrix 

CLQ 

a1 

a\ 

a-i 

O-n-d an-d+\ 

an-d+l Un-d+2 

an-d+2 a-n-d+3 

1P aP 

n—d—l+n n—d+n 

O-d-1 

a-d 

O-n-l 

*n+\ 

i=d,...,n— 1+n 

Target vector 

dd 

O-d+1 

x n + l 

x n + 2 

V P 
%n-2+h an-l+h 

(9.7) 
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Test input data vector 

, * 

x„+n= < _ d + - ap
n_d+h+1 ... < _ 1 + -

Where the subscript n symbolizes the damage instance up to which the last online data is 

available, and the subscript n represents the damage instance number after the last online 

data available, and the superscript p symbolizes predicted damage index from the offline 

module, as opposed to being estimated from the online model. 

9.2.1.3. Residual useful life estimation (RULE) 

The residual useful life estimation can be defined as the difference between the number 

of fatigue cycles at which the predicted damage index becomes critical, i.e reaches its critical 

value (a*), and the number of fatigue cycles at which the last online data is available. The 

RULE can be defined as: 

RULE = (n + ii*)AN + N0 - (n)AN - N0 = h*AN (9.9) 

where AN is the number of fatigue cycle increments per each increment of damage instance 

and n* corresponds to the number of damage instances for the damage index to become 

critical after the last available online data. 

9.3. Numerical Results 

To validate the integrated prognosis algorithm, fatigue test was performed on an Al-

6061 cruciform specimen under biaxial loading. The loaded cruciform specimen in an 

MTS biaxial fatigue test frame can be seen in Fig.7.4. The test was conducted under 

constant cyclic fatigue loading. Details regarding fatigue test can be found in section 7.3.1 

of chapter 7. The online states are estimated based on Eq. (7.5) and using passive sensor 

(9.8) 
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signals acquired from two sensors, one is considered as input and the other is considered 

as output. As discussed earlier (section 7.3.2 of chapter 7), to evaluate the damage index, 

the signal (e^) from the strain gauge mounted on the horizontal flange (or X-arm) of the 

cruciform specimen was considered as the input signal u, whereas the signal (ejf) from the 

web mounted stain gauge was considered as output y. The magnified view of the cruciform 

specimen can be seen in Figure 7.5. Based on the online estimated damage states and using 

the self-supervised GP model discussed in previous section the condition based future states 

are predicted. The details of the numerical results are discussed in the following subsections. 

9.3.1. Single step ahead state forecasting 

Figure 9.2 shows the comparison between single step ahead forecasted state and ac

tual damage state (or damage index) with online data available up to the previous damage 

level. The prognosis algorithm starts predicting from damage level 7. The dimension d of 

the Gaussian process input was chosen as 6. Therefore the prognosis algorithm requires at 

least six damage states to obtain the 1 x 6 test input vector (see Eq. 9.6). Also, due to 

the unavailability of any training data set D (Eq. 9.5), to predict the 7th damage state, 

the initial hyperparameters (Eq. 9.4) are chosen as: 6% = 0™ = 1 a n d 9„ = 0.1. There 

is a large mismatch between the 7th level predicted damage index and the actual damage 

index. However, for predicting damage state levels eight and beyond, the training input 

data matrix (Eq. 9.5) and target vectors (Eq. 9.6) are recursively updated. For each recur

sive updating, a new set of hyperparameters were obtained using the conjugate gradient 

optimization method. Once the hyperparameters are estimated, the one-step ahead dam

age index was predicted for the immediate ahead damage level. Figure 9.2 shows a clear 

correlation between one-step ahead predicted damage index and the actual damage index. 
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Fig. 9.2. One-step ahead damage state prediction using offline predictive model 

It must be noted that the actual damage indices are the online damage states (or damage 

index) which were directly estimated from the sensor signals. The threshold value of 0.7 

is 70% of the final damage index value of 1. From Eq. (7.5) (chapter 7) the damage in

dex reaches its final value of 1 when there is no cross-correlation between the input u and 

y. This is because the specimen has undergone complete failure. It should be noted that 

the critical damage index value of 0.7 was selected based on the results from previously 

performed similar experiments. 

9.3.2. Multi step ahead prediction 

Unlike the single step ahead prediction, the multi step ahead prediction recursively 

predicts the damage state multiple steps ahead of the damage level at which last online 

data was available. Figure 9.3 shows the multi step ahead state prediction. Similar to single 

step ahead prediction process, the prognosis algorithm was started after the 6th damage 
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level (i.e., at 18.5 kcycles). Prom the 7th damage level (20kcycles), damage indices were 

predicted and then fed back to the prognosis model to update the Gaussian process training 

data matrix (Eq. 9.7) and the test input vector (Eq. 9.8). The feedback process and the 

corresponding future state predictions were continued recursively as long as the predicted 

damage index did not reach its critical value of 0.7. It is to be noted that unlike the single 

step ahead prediction, the training data matrix and the corresponding test input vector 

were updated with offline model predicted states, rather than being updated with online 

model estimated states, which could not be available in real time. It can be seen from Fig. 

9.3 that, with online data available up to damage level 23 (at 44 kcycles), the multi step 

ahead predicted states fails to reach the critical value of 0.7. This is because the predictive 

model was unable to learn the damage growth dynamics. It is also to be noted that if 

the predictive model does not learn the damage growth dynamics it keeps on running with 

only predicting unvarying damage indices. The predicted unvarying damage indices time 

series can also be seen from the Fig. 9.3. Without satisfying the threshold criteria, the 

prediction of unvarying damage indices could have continued indefinitely. However to reduce 

the computational expenses, the prognosis algorithm was stopped at certain times. The 

criteria for stopping the algorithm was if the rate of damage index growth was not greater 

than 1 x 10-7/cycles for six consecutive damage levels, the offline predictive model had to be 

terminated. This was because, if the damage growth was slow enough, the predicted damage 

index, would never reach the critical value even if the algorithm had to run indefinitely. 

From Figure 9.3 it is also seen that, the first multi step ahead prediction curve, that reaches 

the critical value starts from damage level 24 (from 45.5 kcycles). Beyond this damage level, 

the multiple step ahead prediction increasingly converges with the actual damage index. 
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Fig. 9.3. Multi-step ahead damage state prediction using offline predictive model. 

From the above mentioned observations, it can be assumed that the prediction horizon (or 

the true positive regime) was between damage level 24 (45.5 kcycles) and damage level 42 

(72.5 kcycles), during which, the predicted damage states reached its critical value. 

9.3.3. Residual useful life estimation (RULE) and mean square error evaluation 

Using Eq. (9.9), the residual useful life at any given damage level (up to the last online 

data available) was estimated. Figure 9.4 shows the comparison of predicted RULE and 

actual RULE. From the figure it can be seen that, there is a good correlation between 

predicted and actual RULE in the true positive regime i.e., between 45.5 kcycles and 72.5 

kcycles. Also as more and more online data becomes available, better correlation between 

predicted RULE and actual RULE is observed. Figure 9.5 shows the mean square error 

between predicted RULE and estimated RULE. It can be seen that during the true positive 
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Fig. 9.4. Comparision of predicted RULE and actual RULE. 

regime, the mean square error is substantially lower than the mean square error during the 

false positive regime. 

9.4. Conclusion 

An online-offline prognosis model is proposed for adaptive future damage state predic

tion and residual useful life estimation. The proposed prognosis model combines an online 

state estimation model with an offline predictive model to adaptively estimate the resid

ual useful life of an Al-6061 cruciform specimen under biaxial loading. The online model 

was based on passive sensing approach (chapter 7), which estimates the current damage 

states. Once the current damage state was available from the online model, the informa

tion was fed to an offline predictive model to obtain the future states and remaining useful 

life estimation (RULE). The offline predictive model is a high-dimensional kernel function 

based Gaussian process model (previously discussed in chapter 3). The future states are 
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Fig. 9.5. Mean square error between predicted RULE and actual RULE. 

recursively predicted by feeding back the previous predicted states to the offline model. 

Also, the model parameters (Gaussian process hyperparameters) were updated with recur

sively. Good correlation was also observed between actual damage states and predicted 

future damage states well before the final failure occurred. Furthermore, a good correlation 

between predicted RULE and actual RULE is also observed during which, the predicted 

damage index reached its critical value. 

file:///SfllS
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CHAPTER 10 

Summary and Future Works 

A real-time framework has been developed for condition based fatigue damage state 

estimation and residual useful life prediction. The developed framework consists of both 

online structural health monitoring (SHM) model for current damage state estimation and 

offline prognosis model for future damage state prediction. State awareness models have 

been developed through SHM using strain gauge based passive sensing measurements as well 

as using guided wave propagation based active sensor measurements. Both SHM models 

estimate time-series damage condition using real-time sensor measurements. In addition 

to forecasting the future damage states, an offline prognosis has been developed using 

Gaussian process (GP). The integrated online-offline framework is illustrated for condition 

based fatigue damage state prediction and remaining useful life estimation. The approach 

is validated against monitoring and predicting fatigue damage of complex Al-2024/6061 

structures. In this chapter, a general summary of the research is presented, along with 

some thoughts on future work. 

10.1. Summary 

The major contribution of this work is to develop an integrated condition based damage 

prognosis model. The integrated framework comprises the following three critical elements. 

1. Offline damage prognosis 

2. Online state estimation using active sensing 

3. Online state estimation using passive sensing 

4. Condition based adaptive prognosis 

The major observations from these studies are summarized in the following sections. 
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10.1.1. Offline damage prognosis 

A one-step ahead Bayesian Gaussian process (GP) predictive model has been developed 

to forecast damage under constant, random and flight profile fatigue loading. The GP model 

is based on high-dimensional kernel transformation that can perform nonlinear pattern 

reorganization. Based on history of fatigue damage information, the GP model uses a 

Bayesian framework to predict the future fatigue damage states for any future anticipated 

load. The important observations from the offline GP model are as follows. 

1. Compared to the conventional fracture mechanics approach the proposed data driven 

approach does not require the use of any approximated coupon geometric function 

that is necessary in the case of conventional Paris law based fracture mechanics ap

proach to model the stress intensity factor. This indicates that, the developed GP 

model can be useful for fatigue modeling of real-life complex geometry and is expected 

to give better prediction performance compared to the fracture mechanics type model. 

2. The approach is computationally less intensive, compared to FE models and therefore 

can be suitable for on-board applications. 

3. The numerical validation under random and flight profile fatigue load shows that pre

diction under a particular load spectrum can be performed very accurately by training 

the GP model with the fatigue test data obtained under same loading condition. 

4. Prediction under a different loading spectrum can be performed fairly accurately if 

the GP model has been trained with a fatigue test data set that contains majority of 

the test case load patterns (e.g., the load ratios). In the present case this is illustrated 

with an example where the GP model is trained using random load fatigue test data 
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and prediction is made for flight profile load. 

Prom the above discussion, it can be summarized that the proposed approach can effectively 

be used in practical applications. It is assumed that each aircraft manufactures performs 

at least one full-scale fatigue test to validate the structural integrity. During this testing, 

required data can be collected and can be used to train the GP model. It is anticipated 

that this trained GP model can then be used in the on-board system to predict damage in 

real-time for any new anticipated load at any given instant of time. 

10.1.2. Online state estimation using active sensing 

The online damage state estimation estimates the current health of the structure based 

on real-time sensor measurements. Both active and passive sensor measurements based on

line estimation models have been developed. For active sensor measurement two different 

approaches have been developed, such as supervised and unsupervised state estimation 

model. A GP supervised model is developed to estimate the online damage states. The 

online damage states are estimated using real-time sensor measurements and a trained GP 

model. The active sensing based approach is based on piezoelectric sensor signals, which 

are acquired using a narrowband input applied to piezoelectric actuator. To estimate the 

damage states for a particular specimen previous test data were used to train the GP model. 

From previous test, sensor signal features such as change in signal variance and change in 

central frequency of the applied input signal was used to construct the GP input matrix. 

For the corresponding output, the visually measured crack length was used. The GP model 

was trained using the input-output history data. The trained GP model was used to esti

mate the unknown damage state at any given instant of time if the corresponding sensor 



www.manaraa.com

193 

signals were available. The developed approach is demonstrated on an Al-2024 Lug-joint 

damaged under uniaxial fatigue loading. The online damage state estimation showed that 

there is a good correlation between experiment and estimation when the crack length is 

larger than 6 mm. 

The supervised GP model may not be feasible for all practical applications since it is 

require measuring the training case damage conditions by visual measurements. The visual 

measurements may not be always possible as in case of monitoring unassailable regions such 

as in undercarriages. To avoid this problem of visual measurements in supervised approach 

an unsupervised approach is preferred. Different unsupervised system identification models 

are developed for online damage state estimation. Two nonparametric system identification 

techniques, empirical transfer function estimation (ETFE) approach and correlation anal

ysis approach (CRA), have been presented for estimating the time-series fatigue damage 

states. Broadband ultrasonic input was used as opposed to narrowband ultrasonic input. 

The broadband input helps estimating smaller damage. Novel dual sensing method was 

used for better noise removal and to improve spatial resolution in time-series damage state 

estimation. The time-series damage estimation approaches have been validated on a com

plex Al-2024 cruciform specimen damaged under biaxial fatigue loading. The important 

observations from the broadband input based unsupervised models are as follows. 

1. The developed approach estimates very small damage such as micro cracks in front 

of plastic zones. 

2. The procedure is capable of estimating time-series damage states encompassing all 

three fatigue damage regimes, such as stage-I, II and III crack growth stages. 
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3. Numerical study shows that the correlation based damage index estimation follows a 

better trend of cumulative damage growth compared to the empirical transfer function 

estimation based approach. 

4. The damage index estimation based on the broadband chirp input outperforms the 

narrowband input based damage index estimation. 

5. In the pulse-echo configuration, with sensors placed near the actuator, was more 

effective for time series damage state estimation than the pitch-catch configuration, 

where the sensors were placed away from the actuator. 

6. The unsupervised approaches showed good validation on complex cruciform geometry. 

10.1.3. Online state estimation using passive sensing 

Active sensing approach requires external power source to excite the piezoelectric actu

ator. To avoid this limitation a passive sensor measurement based approach has also been 

developed. An online state estimation technique based on correlation of dynamic strain 

measurements at two different location of a structure has been developed. The approach 

has been validated on an Al-6061 cruciform specimen subjected to biaxial but constant cycle 

fatigue loading. The numerical results showed good correlation between online estimated 

time-series damages states and the corresponding normalized visual measurements. The 

proposed approach can be useful for monitoring of rotary components such as rotor blades, 

hubs, transmission shafts of helicopter or aircraft engines. With maintaining a particular 

reference speed the above mentioned components can be subjected to a constant cyclic 

loading either in grounded condition or in-flight condition. And by following the developed 

approach, the instantaneous health of the mentioned rotary components can be estimated. 
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A passive sensor measurement based dynamic strain mapping model has also been 

developed. Passive sensor measurement based correlation analysis model works well only 

when the applied cyclic load is constant. Therefore, a passive sensing based model that 

can be useful for damage state estimation under random loading has also been developed. 

The model uses, dynamic strain at two different locations. Individual reference condition 

dynamic models are estimated my mapping the reference condition applied load with the 

reference condition measured dynamic strain. The reference condition dynamic models are 

estimated using Bayesian Gaussian process approach. Once the reference models are esti

mated, using these models the dynamic strains are predicted for any applied load at any 

given instant of time. The predicted strains are compared with the actual sensor measure

ments at the above mentioned locations to estimate the corresponding error signals. Finally 

the error signals at these two locations are correlated to estimate the corresponding fatigue 

damage state. The developed model was validated for time-series damage state estimation 

of a complex geometry Al-2024 cruciform structure subjected to biaxial random loading. 

The predicted damage states have been compared with the actual damage states estimated 

using visual images. From the comparison it is found there is a good correlation between 

the predicted and actual time-series damage states. It is expected that the developed ap

proach can be useful for monitoring the real-time health of any real-life complex structure 

under any complex random loading conditions. 

10.1.4. Condition based adaptive prognosis 

An integrated framework of online SHM model and offline prognosis model has been 

developed for condition based damage state prediction. The developed framework combines 

an online state estimation model with an offline predictive model to adaptively estimate the 
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residual useful life. The online model estimates the current damage states using real-time 

sensor measurements. Once the current damage state was estimated, it was fed to the 

offline model to update new initial conditions. Based on this new condition, time-series 

future states were recursively predicted. Also, the model parameters (Gaussian process hy-

perparameters) were updated recursively. The developed approach has been demonstrated 

on a complex Al-2024 cruciform structure. Good correlation was observed between actual 

damage states and the predicted future damage states well before final failure occurred. 

Furthermore, a good correlation between predicted and actual RULE was also observed. 

From the above observations, it is expected that the developed methodology can be useful 

for any practical applications. 

10.2. Future Works 

As mentioned earlier, the overall objective of this research work was to develop an 

integrated framework for condition based damage state estimation. Based on the present 

study, some improvements and new concepts are suggested as follows, 

1. The multivariate GP model discussed for the complex cruciform geometry was trained 

using only one previous test data set. Using only one data set for training the GP 

model does not give the statistical nature of crack growth attributed from the micro-

structural variability. Generating training data sets by fatiguing real structures is 

time consuming and costly. It is developed to perform physics based multiscale FE 

simulation to avoid costly and highly time consuming experiments. With different 

microstructure representative volume element (RVE), offline fatigue simulation must 

be performed to generate the crack growth history. Different simulated crack growth 
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histories should be generated under different loading conditions and using different 

microstructure RVE. These crack growth histories along with corresponding loading 

histories must be used for training the GP model. Then the GP predictive model will 

be statistically robust compared to the present model. The proposed GP model only 

depends on data, and it is not necessary to run a FE model in real-time. Rather, 

offline FE simulated data can be stored as a library in the on-board computer for 

real-time condition based damage prediction. 

2. In this work the online damage sate estimation was performed for a smaller structure. 

However, real-life structural components are often larger in dimension. These large 

structures can not be monitored using a single sensor network as used in the current 

work. A suitable framework has to be developed for monitoring large structures using 

multiple sensor networks. The issue of large scale data storage and information fusion 

has to be addressed properly. 

3. A single component structure is studied in this work. However, real-life structural 

assemblies are more complex concatenated systems with multiple subcomponents. To 

perform condition monitoring of such large systems, the developed approach may not 

be useful directly. A suitable hierarchical system must be developed for condition 

based life estimation of the overall system. 
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